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Abstract. With remote sensing we can readily observe the
Earth’s surface, but direct observation of the sub-surface re-
mains a challenge. In hydrology, but also in related disci-
plines such as agricultural and atmospheric sciences, knowl-
edge of the dynamics of soil moisture in the root zone of veg-
etation is essential, as this part of the vadose zone is the core
component controlling the partitioning of water into evapora-
tive fluxes, drainage, recharge, and runoff. In this paper, we
compared the catchment-scale soil moisture content in the
root zone of vegetation, computed by a lumped conceptual
model, with the remotely sensed Normalized Difference In-
frared Index (NDII) in the Upper Ping River basin (UPRB)
in northern Thailand. The NDII is widely used to monitor
the equivalent water thickness (EWT) of leaves and canopy.
Satellite data from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) were used to determine the NDII
over an 8-day period, covering the study area from 2001 to
2013. The results show that NDII values decrease sharply
at the end of the wet season in October and reach lowest
values near the end of the dry season in March. The val-
ues then increase abruptly after rains have started, but vary
in an insignificant manner from the middle to the late rainy
season. This paper investigates if the NDII can be used as a
proxy for moisture deficit and hence for the amount of mois-
ture stored in the root zone of vegetation, which is a cru-
cial component of hydrological models. During periods of
moisture stress, the 8-day average NDII values were found
to correlate well with the 8-day average soil moisture con-
tent (Su) simulated by the lumped conceptual hydrological
rainfall–runoff model FLEX for eight sub-catchments in the
Upper Ping basin. Even the deseasonalized Su and NDII (af-

ter subtracting the dominant seasonal signal) showed good
correlation during periods of moisture stress. The results il-
lustrate the potential of the NDII as a proxy for catchment-
scale root zone moisture deficit and as a potentially valuable
constraint for the internal dynamics of hydrological mod-
els. In dry periods, when plants are exposed to water stress,
the EWT (reflecting leaf water deficit) decreases steadily, as
moisture stress in the leaves is connected to moisture deficits
in the root zone. Subsequently, when the soil moisture is re-
plenished as a result of rainfall, the EWT increases without
delay. Once leaf water is close to saturation – mostly during
the heart of the wet season – leaf characteristics and NDII
values are not well correlated. However, for both hydrologi-
cal modelling and water management, the stress periods are
most important, which is why this product has the potential
of becoming a highly efficient model constraint, particularly
in ungauged basins.

1 Introduction

Estimating the moisture content of the soil from remote sens-
ing is one of the major challenges in the field of hydrol-
ogy (e.g. De Jeu et al., 2008; Entekhabi et al., 2010). Soil
moisture is generally seen as the key hydrological state vari-
able determining the partitioning of fluxes (into direct runoff,
recharge, and evaporation) (Liang et. al., 1994), the interac-
tion with the atmosphere (Legates et. al., 2011), and the car-
bon cycle (Porporato et al., 2004). The root zone of ecosys-
tems, being the dynamic part of the unsaturated zone, is the
key part of the soil related to numerous sub-surface processes
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(Shukla and Mintz, 1982). Several remote sensing products
have been developed especially for monitoring soil moisture
(e.g. SMOS, ERS, and AMSR-E) but until now correlations
between remote sensing products and observed soil moisture
at different depths have been modest at best (Parajka et al.,
2006; Ford et al., 2014). There are a few possible explana-
tions. One is that it is not (yet) possible to look into the soil
deep enough to observe soil moisture in the root zone of veg-
etation (Shi et al., 1997; Entekhabi et al., 2010); the second
is that soil moisture observations at certain depths are maybe
not the right indicators for the amount of moisture stored in
the root zone (Mahmood and Hubbard, 2007), which is rather
determined by the vegetation-dependent, spatially variable,
three-dimensional distribution and density of roots.

These mainstream methods to derive soil moisture from
remote sensing have concentrated on direct observation of
soil moisture below the surface. The vegetation, through the
vegetation water content (VWC), perturbs this picture. As
a result, previous studies have tried to determine the VWC
from a linear relationship with the equivalent water thick-
ness (EWT) that is measured by the Normalized Differ-
ence Infrared Index (NDII) (e.g. Yilmaz et al., 2008). The
NDII was developed by Hardisky et al. (1983) using ratios
of different values of near infrared reflectance (NIR) and
short wave infrared reflectance (SWIR), defined by (ρNIR−
ρSWIR) / (ρNIR+ ρSWIR), similar to the NDVI, which is de-
fined by discrete red and near infrared. In addition to deter-
mining the water content of vegetation, the NDII can be ef-
fectively used to detect plant water stress according to the
property of shortwave infrared reflectance, which is nega-
tively related to leaf water content due to the large absorp-
tion by the leaf (e.g. Steele-Dunne et al., 2012; Friesen et al.,
2012; Van Emmerik et al., 2015). Many studies have found
relationships between the EWT and reflectance at the NIR
and SWIR portion of the spectrum used for deriving NDII
(Hardisky et al., 1983; Hunt and Rock, 1989; Gao, 1996;
Ceccato et al., 2002; Fensholt and Sandholt, 2003). Yilmaz et
al. (2008) found a significant linear relationship (R2= 0.85)
between EWT and NDII. Subsequently, they tried to deter-
mine a relationship between EWT and VWC in order to
be able to correct direct moisture observations from space.
However, these relationships appeared to be vegetation and
crop-type dependent.

Water is one of the determinant environmental variables
for vegetation growth, especially in water-limited ecosys-
tems during dry periods. From the plant physiology point of
view, water absorption from the root zone is driven by osmo-
sis. Subsequently, water transport from the roots to the leaves
is driven by water potential differences, caused by diffusion
of water out of stomata, called transpiration. This physiolog-
ical relationship supports the correlation between root zone
soil moisture content, moisture tension in the leaves, and the
water content of plants.

Hence, the root zone moisture deficit is connected to the
water content of the canopy/leaves, because soil moisture

suction pressure and moisture content in the leaves are di-
rectly connected (Rutter and Sands, 1958). The NDII was de-
veloped to monitor leaf water content (Hardisky et al., 1983),
so one would expect a direct relation between NDII and root
zone moisture deficit. The deficit again is a direct function of
the amount of moisture stored in the root zone.

So, if leaf water thickness and the suction pressure in the
root zone are connected, then the NDII would directly reflect
the moisture content of the root zone. It would only reflect
the moisture content in the influence zone of roots and not
beyond that. Hence, the NDII could become a powerful indi-
cator for monitoring root zone moisture content, providing an
integrated, depth-independent estimation of how much water
is accessible to roots, available for vegetation. In other words,
the NDII would allow us to see vegetation as a sort of natu-
ral manometer, providing us with information on how much
water is available in the sub-surface for use by vegetation. It
would be an integrated indicator of soil moisture in the root
zone, available directly at the scale of interest.

Thus, the hypothesis is that we can monitor the moisture
content in the root zone from the observed moisture state of
the vegetation by means of the NDII.

In this paper, we tested whether there exists a direct and
functional relationship between a remote sensing product
(the NDII) and the amount of moisture stored in the root
zone, as simulated by a semi-distributed conceptual hydro-
logical model, in which the root zone moisture content is a
key state variable in the short- and long-term dynamics of
the rainfall–runoff signal. Because the NDII is an indicator
for water stress, the index is only expected to show a strong
link with the moisture content of the root zone when there is
a soil moisture deficit. Without water stress occurring within
the leaves, particularly during wet periods, NDII would pos-
sibly not reflect variation in root zone soil moisture content
(Korres et al., 2015).

The analysis was done using data from eight sub-basins
of the Upper Ping River basin (UPRB), a tropical seasonal
evergreen catchment in northern Thailand. This catchment is
adequate for the purpose because it has eight well-gauged
sub-basins with clearly different aridity characteristics and
strong seasonality, providing a good testing ground for the
comparison.

The remotely sensed NDII values have been compared to
the root zone storage as modelled by a semi-distributed con-
ceptual model (semi-distributed meaning that for each sub-
catchment a separate conceptual model has been used). The
different sub-catchments demonstrate a variety of climatic
properties that allow a more rigorous test than a fully lumped
model could provide. In this way, a compromise has been
found between the complexity and data requirements of a
fully distributed model and the simplicity of a completely
lumped model. One could argue that a fully distributed con-
ceptual model would have been a better tool to assess the spa-
tial and temporal pattern obtained by the NDII. This is cor-
rect, but this would have required the availability of more de-e de-
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Figure 1. The UPRB and the locations of the rain-gauge and runoff stations. The numbers indicate the 14 sub-basins of the UPRB.

tailed spatially distributed forcing data (particularly rainfall),
which were not available. Moreover, if a semi-distributed
lumped model, potentially less accurate than a distributed
model, provides a good correlation with NDVI, then this
would be a tougher text than with a fully distributed model.

2 Study site and data

2.1 Study site

The UPRB is situated between latitude 17◦14′30′′ to
19◦47′52′′ N and longitude 98◦ 4′30′′ to 99◦22′30′′ E in
northern Thailand and can be separated into 14 sub-basins
(Fig. 1) (Mapiam, et al., 2014). It has an area of approx-

imately 25 370 km2 in the provinces of Chiang Mai and
Lam Phun. The basin landform ranges from an undulating
to a rolling terrain with steep hills at elevations of 1500–
2000 m, and valleys of 330–500 m (Mapiam and Sriwongsi-
tanon, 2009; Sriwongsitanon, 2010). The Ping River origi-
nates in the Chiang Dao district, north of Chiang Mai, and
flows downstream to the south to become the inflow for the
Bhumibol Dam – a large dam with an active storage capacity
of about 9.7 billion m3 (Sriwongsitanon, 2010). The climate
of the region is controlled by tropical monsoons, with dis-
tinctive dry and wet seasons and free from snow and ice.
The rainy season is influenced by the southwest monsoon
and brings mild to heavy rainfall between May and October.
Annual average rainfall and runoff of the UPRB are approx-(Fig.
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imately 1170 and 270 mm yr−1, respectively. Avoiding the
influence of other factors, these catchments are ideal cases to
concentrate on the relationship between NDII and root zone
moisture content. The land cover of the UPRB is dominated
by forest (Sriwongsitanon and Taesombat, 2011).

2.2 Data collection

2.2.1 Rainfall data

Data from 65 non-automatic rain-gauge stations covering the
period from 2001 to 2013 were used. A total of 42 stations
are located within the UPRB while 23 stations are situated in
its surroundings. These rain gauges are owned and operated
by the Thai Meteorological Department and the Royal Irri-
gation Department. Quality control of the rainfall data was
performed by comparing them to adjacent rainfall data. For
each sub-basin, daily spatially averaged rainfall, by inverse
distance squared, has been used as the forcing data of the
hydrological model.

2.2.2 Runoff data

Daily runoff data from 1995 to 2011 at eight stations located
in the UPRB were adequate to be used for FLEX calibration.
These eight stations are operated by the Royal Irrigation De-
partment in Thailand. The locations of these eight stations
and the associated sub-basins are shown in Fig. 1. These
eight stations control the runoff of the eight sub-basins on
which the eight lumped conceptual models were calibrated.
Runoff data at these stations are not affected by large reser-
voirs and have been checked for their reliability by compar-
ing them with rainfall data covering their catchment areas
at the same periods. Catchment characteristics and available
data periods for model calibration of the selected eight sub-
basins are summarized in Table 1.

2.2.3 NDII data

The satellite data used for calculating the NDII is the MODIS
level 3 surface reflectance product (MOD09A1), which is
available at 500 m resolution in an 8-day composite of the
gridded level 2 surface reflectance products. Each product
pixel contains the best possible L2G observation during an
8-day period selected on the basis of high observation cov-
erage, low view angle, absence of clouds or cloud shadow,
and aerosol loading. MOD09 (MODIS Surface Reflectance)
is a seven-band product, which provides an estimate of the
surface spectral reflectance for each band as it would have
been measured at ground level without atmospheric scat-
tering or absorption. This product has been corrected for
the effects of atmospheric gases and aerosols (Vermote et
al., 2011). The available MODIS data covering the UPRB
from 2001 to 2013 were downloaded from ftp://e4ftl01.cr.
usgs.gov/MOLT. The HDF-EOS conversion tool was applied
to extract the desired bands (bands 2 (0.841–0.876 μm) and

6 (1.628–1.652 μm)) and re-projected into Universal Trans-
verse Mercator (zone 47N, WGS84) from the original ISIN
mapping grid.

3 Methods

3.1 Estimating vegetation water content using near

infrared and short wave infrared

Estimates of vegetation water content (the amount of water in
stems and leaves) are of interest to assess the vegetation wa-
ter status in agriculture and forestry and have been used for
drought assessment (Cheng et al., 2006; Gao, 1996; Gao and
Goetz, 1995; Ustin et al., 2004; Peñuelas et al., 1993). Ev-
idence from physically based radiative transfer models and
laboratory studies suggests that changes in water content in
plant tissues have a large effect on the leaf reflectance in sev-
eral regions of the 0.7–2.5 μm spectrum (Fensholt and Sand-
holt, 2003). Tucker (1980) suggested that the spectral interval
between 1.55 and 1.75 μm (SWIR) is the most suitable region
for remotely sensed leaf water content. It is well known that
these wavelengths are negatively related to leaf water content
due to a large absorption by leaf water (Tucker, 1980; Cec-
cato et al., 2002). However, variations in leaf internal struc-
ture and leaf dry matter content also influence the SWIR re-
flectance. Therefore, SWIR reflectance values alone are not
suitable for retrieving vegetation water content. To improve
the accuracy of estimating the vegetation water content, a
combination of SWIR and NIR (0.7–0.9 μm) reflectance in-
formation was utilized because NIR is only affected by leaf
internal structure and leaf dry matter content but not by water
content. A combination of SWIR and NIR reflectance infor-
mation can remove the effect of leaf internal structure and
leaf dry matter content and can improve the accuracy of re-
trieving the vegetation water content (Ceccato et al., 2001;
Yilmaz et al., 2008; Fensholt and Sandholt, 2003).

On the basis of this idea, Hardisky et al. (1983) derived the
NDII:

NDII= ρ0.85− ρ1.65

ρ0.85+ ρ1.65
, (1)

where ρ0.85 and ρ1.65 are the reflectances at 0.85 and 1.65 μm
wavelengths, respectively. NDII is a normalized index and
the values theoretically vary between −1 and 1. A low NDII
value and especially below zero means that reflectance from
ρ0.85 is lower than the reflectance from ρ1.65, which indicates
canopy water stress.

The 8-day NDII values, as collected from MODIS, were
averaged over each sub-basin to allow comparison to the 8-
day average Su (root zone storage) values extracted from the
FLEX model results at each of the eight runoff stations.

We did not use field observations of soil moisture. One
could argue that field observations should be used to link
NDII to moisture stress. However, besides not being avail-
able, it is doubtful if point observations at fixed depth wouldwould
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Figure 2. Model structure of the FLEX.

provide a correct measure for the moisture content in the root
zone. It is more likely that vegetation distributes its roots and
adjusts its root density to the specific local conditions and
that the root density and distribution is not homogeneous in
space and depth.

3.2 The semi-distributed FLEX model

FLEX (Fig. 2) is a conceptual hydrological model with an
HBV-like model structure developed in a flexible modelling
framework (Fenicia et al., 2011; Gao et al., 2014a, b). The
model structure comprises four conceptual reservoirs: the in-
terception reservoir Si (mm), the root zone reservoir repre-
senting the moisture storage in the root zone Su (mm), the
fast response reservoir Sf (mm), and the slow response reser-
voir Ss (mm). It also includes two lag functions representing
the lag time from storm to peak flow (TlagF) and the lag time
of recharge from the root zone to the groundwater (TlagS).
Besides a water balance equation, each reservoir has process
equations that connect the fluxes entering or leaving the stor-
age compartment to the storage in the reservoirs (so-called
constitutive functions). Table 2 shows the 15 equations of
the FLEX model, discussed below. The 11 model parameters
with their distribution values are shown in Table 3, which
have to be determined by model calibration. Forcing data in-
clude the elevation-corrected daily average rainfall (Gao et
al., 2014a), daily average, minimum and maximum air tem-
perature, and potential evaporation derived by the Hargreaves
equation (Hargreaves and Samani, 1985).
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Table 2. Water balance and constitutive equations used in FLEXL.

Reservoirs Water balance equations Equation Constitutive equations Equation 

Interception i
i e

d
d
S P E P
t
=  (2) 

0 i
i

i

; 0
0; 0
E S

E
S

>
=

=
(3) 

i i,max
e

i i,max

0;S < S
P =

P;S = S (4)

Root zone 

reservoir 
u

e t
d
d
S P R E
t
=  (5) 

u

e u,max

1 (1 )
(1 )

SR
P S

=
+

 (6) 

u
0 i

e u,max

( ) min(1, )
(1 )t

SE E E
C S

=
+ (7)

Splitter and 

Lag function 
  

fR R D=  (8) 

s (1 )R R D= (9)

lag

fl f
1

( ) ( ) ( 1)
T

i
R t c i R t i

=

= + (10)

lag

1
( ) /

T

u
c i i u

=

= (11)

Fast reservoir f
fl ff f

d
d
S R Q Q
t
=  (12) 

ff f f,max ffmax(0, ) /Q S S K=  (13) 

f f f/Q S K= (14)

Slow reservoir s
s s

d
d
S R Q
t
=  (15) s s s/Q S K=  (16) 

Table 3. Parameter ranges of the FLEX model.

Parameter Range Parameter Range

Si,max (mm) (0.1, 6) Kff (d) (1, 9)
Su,max (mm) (10, 1000) TlagF (d) (0, 5)
β(–) (0, 2) TlagS (d) (0, 5)
Ce (–) (0.1, 0.9) Kf (d) (1, 40)
D (–) (0, 1) Ks (d) (10, 500)
Sf,max (mm) (10, 200)

3.2.1 Interception reservoir

The interception reservoir uses the water balance equation,
Eq. (2), presented in Table 2. The interception evapora-
tion Ei (mm d−1) is calculated by potential evaporation E0
(mm d−1) and the storage of the interception reservoir Si
(mm) (Eq. 3). There is no effective rainfall Pe (mm d−1) as
long as the Si is less than its storage capacitySi,max (mm)
(Eq. 4) (de Groen and Savenije, 2006).

3.2.2 Root zone reservoir

The moisture content in the root zone is simulated by a reser-
voir (Eq. 5) that partitions effective rainfall into infiltrationation
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Table 4.Average NDII values during the wet season, the dry season,
and the whole year from 2001 to 2013, and their order of moisture
content (range is 1–13; lower values indicate less NDII) for the en-
tire UPRB.

Year Wet season Dry season Annual
(May–October) (November–April)

2001–2002 0.223 (2) 0.119 (7) 0.171 (4)
2002–2003 0.205 (9) 0.149 (1) 0.177 (1)
2003–2004 0.218 (5) 0.091 (12) 0.155 (12)
2004–2005 0.210 (8) 0.088 (13) 0.149 (13)
2005–2006 0.200 (11) 0.128 (3) 0.164 (7)
2006–2007 0.224 (1) 0.111 (10) 0.168 (5)
2007–2008 0.222 (3) 0.130 (2) 0.176 (2)
2008–2009 0.221 (4) 0.123 (5) 0.172 (3)
2009–2010 0.213 (7) 0.101 (11) 0.157 (11)
2010–2011 0.197 (13) 0.128 (4) 0.163 (8)
2011–2012 0.216 (6) 0.116 (9) 0.166 (6)
2012–2013 0.201 (10) 0.118 (8) 0.159 (10)
2013–2014 0.199 (12) 0.123 (6) 0.161 (9)
Average 0.211 0.118 0.165
Maximum 0.224 0.149 0.177
Minimum 0.197 0.088 0.149

and runoff R (mm d−1), and determines the transpiration by
vegetation Et (mm d−1). Being the key partitioning point, the
root zone storage reservoir is the core of the FLEX model.
For the partitioning between infiltration and runoff, we ap-
plied the widely used beta function (Eq. 6) of the Xinanjiang
model (Zhao, 1992; Liang et al., 1992), developed based on
the variable contribution area theory (Hewlett and Hibbert,
1967; Beven, 1979), but which can equally reflect the spa-
tial probability distribution of runoff thresholds. The mois-
ture storage in the root zone reservoir is represented by Su
(mm). The beta function defines the runoff percentage Cr (–)
for each time step as a function of the relative soil moisture
content (Su / Su,max). In Eq. (6), Su,max (mm) is the root zone
storage capacity and β (–) is the shape parameter describ-
ing the spatial distribution of the root zone storage capacity
over the catchment. In Eq. (7), the relative soil moisture and
potential evaporation are used to determine the transpiration
Et (mm d−1); Ce (–) indicates the fraction of Su,max above
which the transpiration is no longer limited by soil moisture
stress (Et = E0−Ei).

3.2.3 Response routine

In Eq. (8), Rf (mm d−1) indicates the flow into the fast re-
sponse routine; D (–) is a splitter to separate recharge from
preferential flow. In Eq. (9), Rs (mm d−1) indicates the flow
into the groundwater reservoir. Equations (10) and (11) are
used to describe the lag time between storm and peak flow.
Rf (t−i+1) is the generated fast runoff from the root zone at
time t−i+1; Tlag is a parameter which represents the time lag
between storm and fast runoff generation; c(i) is the weight
of the flow in i− 1 days before; and Rfl(t) is the discharge
into the fast response reservoir after convolution.

The linear response reservoirs, representing linear rela-
tionships between storages and releases, are applied to con-
ceptualize the discharge from the fast runoff reservoir, and
slow response reservoir. Eq. (12) presents the water balance
of the fast reservoir in which Qff (mm d−1) is the direct sur-
face runoff, with timescale Kff (d), described by Eq. (13),
activated when the storage of fast response reservoir exceeds
the threshold Sf,max (mm), and Qf (mm d−1) is the fast sub-
surface flow, with timescale Kf (d), described by Eq. (14).
The slow groundwater reservoir is described by Eq. (15),
which generates the slow runoff Qs (mm d−1) with timescale
Ks (d), described by Eq. (16). Qm (mm d−1) is the total
amount of runoff simulated from the three individual com-
ponents, adding up Qff,Qf, and Qs.

3.2.4 Model calibration

A multi-objective calibration strategy has been adopted in
this study to allow for the model to effectively reproduce dif-
ferent aspects of the hydrological response, i.e. high flow,
low flow, and the flow duration curve. The model was
therefore calibrated to three Kling–Gupta (K–G) efficiencies
(Gupta et al., 2009): (1) the K–G efficiency of flows (IKGE)
measures the performance of hydrograph reproduction, espe-
cially for high flows; (2) the K–G efficiency of the logarithm
of flows emphasizes low flows (IKGL); and (3) the K–G effi-
ciency of the flow duration curve (IKGF) represents the flow
statistics.

The MOSCEM-UA (Multi-Objective Shuffled Complex
Evolution Metropolis-University of Arizona) algorithm
(Vrugt et al., 2003) was used as the calibration algorithm to
find the Pareto-optimal solutions defined by the mentioned
three objective functions. This algorithm requires three pa-
rameters including the maximum number of iterations, the
number of complexes, and the number of random samples
that is used to initialize each complex. To ensure fair com-
parison, the parameters of MOSCEM-UA were set based on
the number of model parameters. Therefore, the number of
complexes is equal to the number of free parameters n; the
number of random samples is equal to n ·n ·10; and the num-
ber of iterations was set to 30 000. The model is a widely
validated model, which is only used here to derive the magni-
tude of the root zone moisture storage. Therefore, validation
is not considered necessary, since the model is merely meant
to compare calibrated values of Su with NDII.

3.3 Deseasonalization

Seasonal signals exist both in the NDII and Su time series.
This can lead to spurious correlation. Therefore, we desea-
sonalized both signals to eliminate this strong signal (Schae-
fli and Gupta, 2007) and subsequently compare the devia-
tions from the seasonal signals of both NDII and Su. Firstly,
the NDII and Su were normalized between 0 and 1. Then,
seasonal patterns of NDII and Su were determined as the av-into t
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Figure 3. Monthly average NDII values for the UPRB in 2004. The green colour indicates an NDII between 0.15 and 0.30, yellow between 0
and 0.15, orange between−0.15 and 0, and red an NDII <−0.15) representing relatively high, medium, low, and very low root zone moisture
content.

Figure 4. Monthly average NDII values for six sub-basins compared to the basin average in the UPRB. Note that three wettest and three
driest basins are presented in this graph.

erage seasonal signals, after which they were subtracted from
the normalized data.

4 Results

4.1 Spatial and seasonal variation of NDII values over

the UPRB

To demonstrate the spatial and seasonal behaviour of the
NDII over the UPRB, the 8-day NDII values were aggre-
gated to monthly values for 2001–2013. Figure 3 shows ex-
amples of monthly average NDII values for the UPRB in
2004, which is the year with the lowest annual average NDII
value. The figure shows that NDII values are higher during
the wet season (May–October) and lower during the dry sea-
son (November–April). The lower amounts of rainfall be-
tween November and April cause a continuous reduction of

NDII values. On the other hand, higher amounts of rainfall
between May and October result in increasing NDII values.
However, NDII values appear to vary little between July and
October.

The average NDII values during the wet season, the
dry season, and the whole year within the 13 years are
presented in Table 4. The table also shows the order of
the NDII values from the highest (number 1) to the low-
est (number 13). It can be seen that the annual average
NDII value for the whole basin is approximately 0.165,
while the average values during the wet and dry sea-
son are about 0.211 and 0.118, respectively. The highest
mean annual value (NDII= 0.177) occurred in 2002–2003
and the lowest (NDII= 0.149) in 2004–2005. The highest
(NDII= 0.149) and lowest (NDII= 0.088) dry season values
were reported in 2002–2003 and 2004–2005, respectively.
On the other hand, the highest (NDII= 0.224) and lowest
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(NDII= 0.197) wet season values were observed in 2006–
2007 and 2010—2011, respectively. It can be concluded that
a dry season with relatively low moisture content and a wet
season with high moisture content, as specified by NDII val-
ues, do not normally occur in the same year.

The 8-day NDII values were also computed for each of the
14 tributaries within the UPRB from 2001 to 2013. Table 5
shows the monthly averaged NDII values between 2001 and
2013 and the ranking order for each of the 14 tributaries. The
results suggest that the Nam Mae Taeng, Nam Mae Rim, and
Upper Mae Chaem, which have higher mean annual NDII
values, have a higher moisture content than other tributaries,
while Nam Mae Haad, Nam Mae Li, and Ping River sec-
tions 2 and 3, with lower mean annual NDII values, have
lower moisture content than other tributaries. Monthly av-
erage NDII values for these six tributaries are presented in
Fig. 4. It can be seen that during the dry season, NDII val-
ues of the three tributaries with the lowest values are a lot
lower than those of the three with the highest NDII values.
However, NDII values for these two groups are not signif-
icantly different during the wet season. The figure also re-
veals that NDII values tend to continuously increase from
relatively low values in March to higher values in June. The
values slightly fluctuate during the wet season before sharply
falling once again when the rainy season ends, and reach their
minimum values in February.

4.2 FLEX model results

Calibration of FLEX was done on the eight sub-catchments
that have runoff stations. The results are summarized in Ta-
ble 6. The performance of the model was quite good, as
demonstrated in Table 7. In Fig. 5, the flow duration curves
of runoff stations P.20 and P.21 are presented as examples of
model performance. Table 7 shows the average Kling–Gupta
efficiencies values for IKGE, IKGL, and IKGF, which indicate
the performance of high flows, low flows, and flow duration
curve for the eight runoff stations. The results for the flow du-
ration curve appear to be better than those of the high flows
and especially the low flows. However, the overall results are
acceptable and can be used for further analysis in this study.

4.3 Relation between NDII and root zone moisture

storage (Su)

The 8-day NDII values were compared to the 8-day average
root zone moisture storage values of the FLEX model. It ap-
pears that during moisture stress periods, the relationship can
be well described by an exponential function for each of the
eight sub-catchments. Table 8 presents the coefficients of the
exponential relationships as well as the coefficients of deter-
mination (R2) for annual, wet season, and dry season values
for each sub-catchment. The coefficients are merely meant
for illustration. They should not be seen as functional rela-
tionships yet. The corresponding scatter plots are shown in
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Figure 5. Examples of flow duration curves and simulated hydrographs using FLEX at runoff stations P.20 and P.21.

Table 6. FLEX parameters calibrated at eight runoff stations located in the UPRB.

Runoff Si,max Su,max Ce β D Kf Ks TlagF TlagS Sf,max Kff
station (mm) (mm) (–) (–) (–) (days) (days) (days) (days) (mm) (days)

P.4A 2.0 463 0.30 0.66 0.77 2.9 42 1.1 49 93 9.1
P.14 2.3 269 0.55 1.16 0.65 4.0 63 1.5 39 155 7.6
P.21 2.3 388 0.31 0.90 0.64 2.1 66 2.4 48 33 2.5
P.20 2.0 324 0.47 0.50 0.79 7.7 103 1.0 25 69 1.7
P.24A 3.2 209 0.77 1.53 0.89 3.2 267 1.5 44 24 4.2
P.76 2.3 486 0.62 0.32 0.89 2.4 191 2.7 3 130 7.4
P.77 4.5 344 0.48 0.27 0.75 1.5 65 1.2 30 164 5.6
P.71 4.3 532 0.34 0.46 0.90 3.5 80 1.8 15 179 6.5
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Table 7. FLEX model performance at eight runoff stations.

Station Data period IKGE IKGL IKGF

P.4A 1995–2009 0.822 0.667 0.963
P.14 1995–2007 0.796 0.442 0.966
P.21 1995–2009 0.814 0.718 0.985
P.20 1995–2011 0.792 0.685 0.964
P.24A 1995–2011 0.623 0.598 0.945
P76 2000–2011 0.539 0.665 0.916
P.77 1999–2011 0.775 0.612 0.970
P.71 1996–2009 0.823 0.714 0.975
Average 0.748 0.638 0.961

Fig. 6. It can be clearly seen that the correlation is much bet-
ter in the dry season than in the wet season. During the wet
season, there may also be short periods of moisture stress,
where the exponential pattern can be recognized, but no clear
relation is found when the vegetation does not experience any
moisture stress.

Examples of deseasonalized and scaled time series of
NDII and root zone storage (Su) values for the sub-
catchments P.20 and P.21 are presented in Fig. 7. The scaled
time series of the NDII and Su values were calculated by
dividing their value by the differences between their max-
imum and minimum values: NDII/(NDIImax-NDIImin) and
Su / (Su,max− Su,min), respectively, while the maximum and
the minimum are the values within the overall considered
time series. Figure 7 shows that the scaled NDII and Su val-
ues are highly correlated during the dry season, but less so
during the wet season. These results confirm the potential
of NDII to effectively reflect the vegetation water content,
which, through the suction pressure exercised by the mois-
ture deficit, relates to the moisture content in the root zone.
During dry periods, or during dry spells in the rainy season,
as soon as the leaves of the vegetation experience suction
pressure, we see high values of the coefficient of determina-
tion.

If the soil moisture in the root zone is above a certain
threshold value, then the leaves are not under stress. In
the UPRB, this situation occurs typically during the middle
and late rainy season. The NDII then does not vary signif-
icantly while the root zone moisture storage may still vary,
albeit above the threshold where moisture stress occurs. This
causes a lower correlation between NDII and root zone stor-
age during wet periods. Interestingly, even during the wet
season dry spells can occur. We can see in Fig. 6, that during
such a dry spell, the NDII and Su again follow an exponential
relationship.

We can see that the Su, derived merely from precipitation
and energy, is strongly correlated to the vegetation water ob-
served by NDII during condition of moisture stress, without
time lag (Fig. 6, and Figs. S1, S2 in the Supplement). Intro-
duction of a time lag resulted in reduction of the correlation
coefficients (see the Supplement). This confirms the direct re-

sponse of vegetation to soil moisture stress, which confirms
that the NDII can be used as a proxy for root zone moisture
content.

The deseasonalized results of dry periods in sub-
catchments P.20 and P.21 are shown in Fig. 7. We found these
variations of deseasonalized NDII and Su to be similar in
these two sub-catchments, with the coefficients of determi-
nation (R2) as 0.32 and 0.18, respectively, in P.20 and P.21.
More important than the coefficient of determination is the
similarity between the deseasonalized patterns. For P.20, the
year 2001 is almost identical, whereas the years 2004 and
2006 are dissimilar. In general, the patterns are well repro-
duced, especially if we take into account the implicit uncer-
tainties of the lumped hydrological model, the uncertainties
in the 8-day derived NDII, and the data of precipitation and
potential evaporation used in the model. The results of other
tributaries can be found in the supplementary materials.

5 Discussion

5.1 Is vegetation a troublemaker or a good indicator

for the moisture content of the root zone?

In bare soil, remote sensors can only detect soil moisture
within a few centimetres below the surface (∼ 5 cm) (En-
tekhabi et al., 2010). Unfortunately, for hydrological mod-
elling, the moisture state of the bare surface is of only lim-
ited interest. What is of key interest for understanding the
dynamics of hydrological systems is the variability of the
moisture content of the root zone, in which the main dynam-
ics take place. This variability determines the rainfall–runoff
behaviour, the transpiration of vegetation, and the partition-
ing between different hydrological fluxes. However, observ-
ing the soil moisture content in the root zone is still a major
challenge (Entekhabi et al., 2010).

Normally, the moisture content of the surface layer is
linked to the total amount of moisture in the root zone.
Knowing the surface soil moisture, the root zone soil mois-
ture can be estimated by an exponential decay filter (Albergel
et al., 2008; Ford et al., 2014) or by models (Reichle, 2008).
However, the surface soil moisture is only weakly related to
root zone soil moisture (Mahmood and Hubbard, 2007); it
only works if there is connectivity between the surface and
deeper layers, and when a certain state of equilibrium has
been reached (when the short-term dynamics after a rain-
fall event has levelled out). It is also observed that the pres-
ence of vegetation prevents the observation of soil moisture
and further deteriorates the results (Jackson and Schmugge,
1991). Avoiding the influence of vegetation in observing soil
moisture (e.g. by SMOS or SMAP) is seen as a challenge by
some in the remote sensing community (Kerr et al., 2001; En-
tekhabi et al., 2010). Several algorithms have been proposed
to filter out the vegetation impact (Jackson and Schmugge,
1991), also based on NDII (e.g. Yilmaz et al., 2008). But iscoeffi
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Sub-
basin Annual Wet Season Dry Season 

P.4A 

   
P.14 

   
P.20 

   
P.21 

   
P.24A 

   
P.71 

P.76 

   
P.77 

   

Figure 6. Scatter plots between the average NDII and the average root zone moisture storage (Su) for eight sub-basins controlled by runoff
stations. Regression lines are added merely to illustrate the degree of correlation.
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Table 8. Exponential relationships between the average NDII values and simulated root zone moisture storage (Su) in the eight sub-basins
controlled by the eight runoff stations.

Runoff station
Annual relationship Wet season relationship Dry season relationship

a b R2 a b R2 a b R2

P.4A 11.2 12.4 0.66 11.1 12.9 0.53 12.6 11.2 0.90
P.14 21.9 9.8 0.81 19.2 10.8 0.71 24.6 8.5 0.92
P.20 52.3 7.4 0.79 36.2 9.1 0.72 59.7 6.7 0.91
P.21 30.8 9.0 0.68 27.8 9.3 0.53 30.6 9.22 0.86
P.24A 22.1 8.5 0.60 24.2 8.3 0.41 22.4 8.1 0.81
P.71 2.1 19.9 0.77 1.9 20.5 0.65 2.3 19.0 0.87
P.76 10.1 13.6 0.85 8.1 14.4 0.74 10.8 14.6 0.87
P.77 35.4 8.0 0.70 20.7 10.2 0.61 40.6 7.7 0.83
Average – – 0.73 – – 0.61 – – 0.87

Note: Su = aebNDII.

Figure 7. Scaled time series, seasonality, and deseasonalized (dry season) time series of the 8-day averaged NDII values compared to the
8-day averaged simulated root zone moisture storage (Su) in the Nam Mae Rim sub-basin at P.20 (Chiang Dao) and P.21 (Ban Rim Tai)
runoff stations. The coefficients of determination (R2) of the deseasonalized NDII and Su are 0.32 and 0.18, respectively, for P.20 and P.21.
For the results of all the eight sub-basins, please refer to the Supplement.

vegetation a troublemaker, or does it offer an excellent op-
portunity to directly gauge the state of the soil moisture?

In this study, we found that vegetation, rather than becom-
ing a problem, could become key to sensing the storage dy-
namics of moisture in the root zone. The water content in the
leaves is connected to the suction pressure in the root zone
(Rutter and Sands, 1958). If the suction pressure is above
a certain threshold, then this connection is direct and very
sensitive. We found a highly significant correlation between
NDII and Su, particularly during periods of moisture stress.
During dry periods or dry spells in the rainy season, as soon

as the leaves of the vegetation experience suction pressure,
we see high values of the coefficient of determination. Ob-
serving the moisture content of vegetation provides us with
direct information on the soil moisture state in the root zone.
We also found that there is almost no lag time between Su
and NDII. This illustrates the fast response of vegetation to
soil moisture variation, which makes the NDII a sensitive and
direct indicator for root zone moisture content. In fact, the
canopy acts as a kind of manometer for the root zone mois-
ture content.
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5.2 The validity of the hypothesis

In natural catchments, it is not possible to prove a hypothe-
sis by using a calibrated model. There are too many factors
contributing to the uncertainty of results: the processes are
too heterogeneous, the observations are not without error, the
climatic drivers are too uncertain and heterogeneous, and fi-
nally, there is substantial model uncertainty, both in the semi-
distributed hydrological model and in the remote sensing
model used to determine the 8-day NDII product. In this case,
we have selected a lumped conceptual model, which is good
at mimicking the main runoff processes, but which lacks the
detail of distributed models. Distributed models, however,
require detailed and spatially explicit information (which is
missing) and are generally over-parameterized, turning them
highly unreliable in data-scarce environments. On top of this,
there is considerable doubt if they provide the right answers
for the right reasons.

This paper is not a modelling study but a test of the hy-
pothesis whether the observed NDII correlates with the mod-
elled root zone storage. We have seen in Fig. 6 that the cor-
relation is strong during periods of moisture stress, but that
when the root zone is near saturation the correlation is weak.
But we also saw that even in the wet season, during short dry
spells, the correlation is strong. Even when the seasonality is
removed, the patterns between NDII and Su in Fig. 7 are sim-
ilar, although there are two dry seasons when this is less the
case (in 2004 and 2006). So given the implicit uncertainty
of the hydrological model, the uncertainty of the meteoro-
logical drivers, as well as the river discharges to which the
models have been calibrated, and the uncertainty associated
with the relationship between NDII and EWT, the good cor-
respondence between the NDII and the root zone storage of
the model during periods of moisture stress support the po-
tential value of the NDII as a proxy for root zone storage in a
conceptual model. It is in our view even likely that the differ-
ences between the signals of the NDII and the Su are rather
related to model uncertainty, the uncertainty of the climatic
drivers, the uncertainty in the relationship between NDII and
EWT, and the problems of determining accurate NDII es-
timates over 8-day periods, than due to a weak correlation
between the root zone storage and the NDII.

5.3 Implication in hydrological modelling

Simulation of root zone soil moisture is crucial in hydrolog-
ical modelling (Houser et al., 1998; Western and Blöschl,
1999). Using estimates of soil moisture states could increase
model performance and realism, but moreover, it would be
powerful information to facilitate prediction in ungauged
basins (Hrachowitz et al., 2013). However, until now, it has
not been practical (e.g. Parajka et al., 2006; Entekhabi et al.,
2010). Assimilating soil moisture in hydrological models, ei-
ther from top-soil observation by remote sensing, or from the
deeper soil column by models (Reichle, 2008), is still a chal-

lenge. Several studies showed how difficult it is to assimilate
soil moisture data to improve daily runoff simulation (Para-
jka et al., 2006; Matgen et al., 2012).

There are several reasons why we have not compared our
results with soil moisture observations in the field. Firstly,
observations of soil moisture are not widely available. More-
over, it is not straightforward to link classical soil moisture
observations to the actual moisture available in the root zone.
Most observations are conducted at fixed depths and at cer-
tain locations within a highly heterogeneous environment.
Without knowing the details of the root distribution, both
horizontally and vertically, it is hard, if not impossible, to
estimate the water volume accessible to plants through their
root systems. We should realize that it is difficult to observe
root zone soil moisture even at a local scale. But measuring
root zone soil moisture at a catchment scale is even more
challenging. State-of-the-art remote sensing techniques can
observe spatially distributed soil moisture, but what they can
see is only the near-surface layers if not blocked by vegeta-
tion. The top layer moisture may or may not be correlated
with the root zone storage, amongst others, depending on the
vegetation type, but it is definitely not the same.

By observing the moisture content of the leaves, the NDII
represents the soil moisture content of the entire root zone,
which is precisely the information that hydrological models
require as this is the component that controls the occurrence
and magnitude of storage deficits and thereby the moisture
dynamics of a system. This study clearly shows the temporal
correlation between Su and NDII. From the relationship be-
tween NDII and Su, we can directly derive a proxy for the soil
moisture state at the actual scale of interest, which can po-
tentially be assimilated in hydrological models. Being such a
key state variable, the NDII-derived Su could become a po-
tentially powerful and otherwise unavailable constraint for
the soil moisture component of hydrological models. This
would mean a breakthrough in hydrological modelling as it
would allow a robust parameterization of water partitioning
into evaporative fluxes and drainage even in data-scarce en-
vironments. Given the implicit uncertainties in hydrological
modelling, this new and readily available proxy could po-
tentially enhance our implicitly uncertain modelling practice.
More importantly, it would open completely new venues for
modelling ungauged parts of the world and could become
extremely useful for discharge prediction in ungauged basins
(Hrachowitz et al., 2013).

We should, of course, be aware of regional limitations.
The proxy only appears to work for periods of moisture
stress. This study considered a tropical seasonal evergreen
ecosystem, where periods of moisture stress regularly oc-
cur. In ecosystems which shed their leaves or go dormant,
other conditions may apply. We need further investigations
into the usefulness of this approach in catchments with dif-
ferent climates. In addition, the phenology of the ecosystem
is of importance, which should be taken into consideration in
follow-up research. Finally, a comparison with distributed ored or
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semi-distributed models would be a further test of the value
of the NDII as proxy for the root zone moisture content.

6 Conclusions

The NDII was used to investigate drought for the UPRB from
2001 to 2013. Monthly average NDII values appear to be spa-
tially distributed over the UPRB, in agreement with seasonal
variability and landscape characteristics. NDII values appear
to be lower during the dry season and higher during the wet
season as a result of seasonal differences between precipi-
tation and evaporation. The NDII appears to correlate well
with the moisture content in the root zone, offering a poten-
tial proxy variable for calibration of hydrological models in
ungauged basins.

To illustrate the importance of NDII as a proxy for root
zone moisture content in hydrological models, we applied
the FLEX model to assess the root zone soil moisture stor-
age (Su) of eight sub-catchments of the UPRB controlled by
eight runoff stations. The results show that the 8-day average
NDII values over the study sub-basin correlate well with the
8-day average Su for all sub-catchments during dry periods
(average R2 equals 0.87), and less so during wet spells (av-
erage R2 equals 0.61). The NDII appears to be a promising
proxy for root zone moisture content during dry spells when
leaves are under moisture stress. The natural interaction be-
tween rainfall, soil moisture, and leaf water content can be
visualized by the NDII, making it an important indicator both
for hydrological modelling and drought assessment.

The potential of using the NDII to constrain model pa-
rameters (such as the power of the beta function β, recharge
splitter D, and Ce in the transpiration function) in ungauged
basins is an important new venue, which could potentially fa-
cilitate the major question of prediction in ungauged basins.

7 Data availability

The data set can be found at: https://zenodo.org/record/
60491.

The Supplement related to this article is available online

at doi:10.5194/hess-20-3361-2016-supplement.
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Abstract 

Currently, droughts are major natural disasters with 

significant impacts on environmental, economic and society. In 

the assessment of the drought, the important parameters in 

assessing risks include drought severity and duration of the 

drought, which is rarely taken into consideration together. This 

study is aimed to assess the hydrologic droughts characteristics 

from the historical 40 years monthly rainfall records of M.6A 

station located in Buriram province by employing the criterion of 

Standardized Precipitation Index (SPI). The computation of the 

SPI series is performed for 3, 6, 9, and 12 months. The drought 

severity and duration are then estimated. The bivariate 

probability distribution for these two drought characteristics is 

constructed by using a Clayton copula method. This study 

estimated the bivariate return period of the combined severity 

and duration drought characteristics. A comparison of univariate 

and bivariate analyses has shown that the bivariate probability or 

return period for each characteristic is smaller than the relying 

univariate return period. Therefore this study will help evaluating 

the risk of droughts more accurately. 

Keywords: Droughts, Standardized Precipitation Index, Bivariate 

distribution, Copula Method 
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Abstract 

This study is conducted to simulate flood inundation area of the 

previous 2010 flood event in Nakhon Ratchasima province and 

appraise the mitigation measures using Mathematical model: 

MIKE11. The model was developed by consist of 2 sub modules; 

Rainfall – runoff module (MIKE11 RR) estimated among of surface 

flow in each catchment area while, the Hydrodynamic module 

(MIKE11 HD) simulated flow pattern in the main river.  Amount of 

water release from Lum Taklong Dam (Station M.177), Lum Pra 

Phloeng Dam (Station M.180), Mun Bon Dam, Lum Sae and Lam 

Chiang Krai Reservoir were considered to be the upstream boundary. 

Whilst, the observed water level of the Mun River at Station M.104 

was stated as the downstream boundary respectively. 
In order to assess the effectiveness of flood mitigation measures, 

the three different alternatives scenarios of flood control management 

are adopted. The first alternative is to regulate the flood flow rate at 

Lalommor Regulator less than 35 cms, results that magnitude water 

elevation at station M.164 will not be overflow. Second, keep the 

upstream water level of the existing Lum Taklong Regulators at the 

storage elevation, fully opened all Regulating Structure located in 

Lum Taklong River and controlling to raise the Maklea Mai and Gud 

Hin, to open on the 21st October and 25th October, meanwhile, 

Lalommor Regulator in Lam Taklong River is regulated to open on 

16th October to 2nd November consequently. The result provides 43.4 

cms of flood discharge at station M.164. Third alternative is to adopt 

all regulation measure in the first alternative and regulate the flood 

flow rate at Lalommor Regulator in Lum Taklong River less than 30 

cms and divert the excess flood volume away from the restrict area. 

As the results, there is no overflow at station M.164 and flood *    (Corresponding author)

E-mail: 1waterman_3880@hotmail.com, 2 fengjwg@ku.ac.th E
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 2

discharge will decrease to be 33 cms. In brief, the simulated results 

confirm that the integration of operation measure as explained in the 

third alternative perform the most effective result to mitigate flood 

damage in the project area.  

Keywords: Lam Taklong River basin, flood mitigation, MIKE 11 
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 Double mass curve 
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Water Balance Error (WBL) 
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Abstract Evaluation procedures for determining water

application uniformity under center-pivot sprinkler systems

have been documented in various technical publications.

The so-called ‘‘catch cans’’ (open containers) are placed

along one or more radial legs from the center of the field to

obtain sample water application measurements, from which

standard performance indices can be calculated. All of the

published procedures for calculating indices such as the

coefficient of uniformity (CU) and distribution uniformity

(DU) are based on equal radial spacing of the containers,

but in practice some evaluators choose to decrease the

spacing toward the outer end of the leg, whereby more

measurement samples are taken at locations which repre-

sent larger relative fractions of the total irrigated area. It is

also common to have inadvertently non-uniform container

spacing when one or more tip over during the test, or when

avoiding placing a container along a wheel track at a tower.

Modified equations and procedures are presented herein to

correctly account for variable container spacing, along with

spreadsheet macros to perform the calculations.

Introduction

There are more than 70,000 center-pivot sprinkler irrigation

machines in USA, and thousands more in other countries.

Approximately half of the sprinkler-irrigated area in USA is

under center pivots, amounting to a total of over three mil-

lion hectares (7.5 million acres). Evaluations of center-pivot

irrigation performance are routinely made, including mea-

surements of application uniformity, which is a component

of on-farm application efficiency. Several recent publica-

tions deal with center-pivot application uniformity and rate

(e.g. Bremond and Molle 1995; Ascough and Kiker 2002;

Kincaid 2005; Dukes and Perry 2006; King et al. 2009).

Heermann and Hein (1968) suggested an equation for

the coefficient of uniformity (CU) in which the radial

distance, r, from the center of the field is used as a

weighting factor for the individual catch depths (or vol-

umes, if the containers are all the same size and shape) to

account for the geometry of the irrigated area. Their

equation has been adopted by ASABE/ANSI in Standard

436 (ASABE 1996) for the evaluation of center pivots and

linear-move sprinkler irrigation systems.

However, when the containers are not equally spaced

the use of radial distance as a weighting factor is not cor-

rect and can result in uniformity calculation errors of

several percent. And it is common to have unequal spacing

along a radial leg of the containers in field evaluations. For

example, the container spacing is often reduced toward the

outer end of the leg in recognition of the greater field area

represented at larger radial distances. In addition, the

container spacing is often inadvertently non-uniform when

some of the containers tip over on their side during the test,

or when collecting the catch values, as well as when a

container location is adjusted to avoid placing it under a

center-pivot tower.
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Uniformity analysis

There are many possible indices to quantify the uniformity

of water application by center-pivot machines and irriga-

tion systems in general. Two of the most traditional and

common indices are the coefficient of uniformity, CU, and

the distribution uniformity, DU. CU and DU are used to

compare the performance of different irrigation methods,

of different fields applying the same method, and over time

for a given irrigation system and field. Each of these is

described below, along with procedures for their calcula-

tion when catch container spacing is non-uniform along a

radial leg under a center-pivot.

Coefficient of uniformity

Christiansen’s (1942) coefficient of uniformity, CU, returns

values from zero to 100% and is perhaps the most common

indicator of application uniformity for sprinkler-irrigated

areas in agriculture. The equation for CU proposed by Heer-

mann and Hein (1968), and as published in ASABE/ANSI

Standard 436 (ASABE1996), for center-pivot evaluations is:

CU ¼ 100 1:0�
Pn

j¼1 wj dj �
Pn

k¼1 dkwkð ÞPn

k¼1 wk

����
����

� �
Pn

k¼1 dkwkð Þ

0
BB@

1
CCA ð1Þ

where CU is the coefficient of uniformity; d is the measured

catch depth (or volume, provided the containers all have the

same opening size and shape) from an individual container;

w is a weighting factor; and, n is the number of containers.

The inner summations are first computed:

Xn
k¼1

wk and;
Xn
k¼1

dkwkð Þ ð2Þ

Then, the outer summation is computed to determine the

CU value. In Eqs. 1 and 2, the weighting factor, w, pro-

posed by Heermann and Hein (1968) is the radial distance,

r, from the pivot point, thereby accounting for the differ-

ences in annular area represented by each container. It is

correct to use this distance as a weighting factor when the

containers are equally spaced in the radial direction.

But if the catch containers do not have equal spacing

along the radial leg, a different weighting factor for the CU

equation should be applied. The annular area correspond-

ing to each container is:

Aa ¼ pðr þ DrÞ2 � pðr � DrÞ2 ¼ 4prDr ð3Þ
where Aa is the annular area (L

2); r is the radial distance (L);

and, Dr is half of the (equal) spacing of containers along a
radial leg from the pivot point (L). The area Aa is equal to the

circumference, 2pr, in the special case when Dr = 0.5,

corresponding to a unit spacing of the containers.

If the spacing between the containers is equal all along

the radial leg, all Dr values are the same, and the constant
4pDr cancels from the equation for Aa when it is used as a

weighting factor. The result is a weighting factor equal to

‘‘r,’’ as given in the equation adopted by ASABE/ANSI

S436. If the spacing is different between adjacent con-

tainers, the area calculation is somewhat more complex:

Aa ¼ p 2r Dro þ Drið Þ þ Dr2o � Dr2i
� � ð4Þ

where Dro is half the radial distance to the next outer
container; and, Dri is half the radial distance to the next
inner container (Fig. 1).

The constant p will cancel from the equation for annular
area Aa when used as a weighting factor for catch values.

The radial values are calculated as: Dri = (rk - rk-1)/2,

and Dro = (rk?1 - rk)/2, where k is the container index.

For the first (innermost) container, use Dri = Dro and for
the last (outermost) container, use Dro = Dri. In summary,
the generalized weighting factor for catch values is:

w ¼ 2r Dro þ Drið Þ þ Dr2o � Dr2i ð5Þ
which should be used instead of ‘‘r’’ in the ASABE/ANSI

S436 CU equation (Eq. 1) in general, and in particular, when

the containers are not equally spaced along the radial leg.

If there are only one or two changes in container spacing

(e.g. 6 m along the radial leg, then reducing to 3 m in the

outermost span of the lateral), the weighting factor ‘‘rDr’’
will give essentially the same results as the more complex

factor in Eq. 5. In this case, Dr can be determined for each
catch container based on half the distance to the next outer

container. ‘‘Appendix 1’’ presents a VBA function using

the generalized weighting factor, w, from Eq. 5 in Eq. 1.

The use of the weighting factor in Eq. 5 instead of ‘‘r’’ can

result in a difference of several percent in the calculated

CU when the catch container spacing is not uniform.

Distribution uniformity

The distribution uniformity is another traditional measure

of irrigation water application uniformity. It is defined as

Fig. 1 Definition of the parameters used for a non-uniform catch

container spacing, showing the radial distance, r, of a container, and the
mid-point radial distances to the adjacent inner and outer containers
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Table 1 Sample center-pivot field evaluation data arranged in a spreadsheet to calculate DU with non-uniform container spacing

Unsorted values Sorted values Cumulative
weights

Deviation from
the low �

Weighted
catch

Cumulative
weighted catches

Dist from
center (ft)

Volume
(ml)

Dri Dro Weight Volume
(ml)

Weight

20 125 10 10 800 90 4,800 4,800 -434,081 432,000 432,000

40 185 10 10 1,600 115 7,200 12,000 -426,881 828,000 1,260,000

60 150 10 10 2,400 125 800 12,800 -426,081 100,000 1,360,000

80 155 10 10 3,200 125 6,400 19,200 -419,681 800,000 2,160,000

100 300 10 10 4,000 130 5,600 24,800 -414,081 728,000 2,888,000

120 90 10 10 4,800 130 8,000 32,800 -406,081 1,040,000 3,928,000

140 130 10 10 5,600 150 2,400 35,200 -403,681 360,000 4,288,000

160 125 10 10 6,400 155 3,200 38,400 -400,481 496,000 4,784,000

180 115 10 10 7,200 160 26,000 64,400 -374,481 4,160,000 8,944,000

200 130 10 10 8,000 170 25,800 90,200 -348,681 4,386,000 13,330,000

220 240 10 10 8,800 180 24,200 114,400 -324,481 4,356,000 17,686,000

240 320 10 10 9,600 180 25,600 140,000 -298,881 4,608,000 22,294,000

260 225 10 10 10,400 185 1,600 141,600 -297,281 296,000 22,590,000

280 215 10 10 11,200 185 26,200 167,800 -271,081 4,847,000 27,437,000

300 310 10 10 12,000 195 25,400 193,200 -245,681 4,953,000 32,390,000

320 265 10 10 12,800 195 26,400 219,600 -219,281 5,148,000 37,538,000

340 285 10 10 13,600 210 25,200 244,800 -194,081 5,292,000 42,830,000

360 275 10 10 14,400 215 11,200 256,000 -182,881 2,408,000 45,238,000

380 275 10 10 15,200 220 16,000 272,000 -166,881 3,520,000 48,758,000

400 220 10 10 16,000 225 10,400 282,400 -156,481 2,340,000 51,098,000

420 305 10 10 16,800 230 22,400 304,800 -134,081 5,152,000 56,250,000

440 250 10 10 17,600 230 30,400 335,200 -103,681 6,992,000 63,242,000

460 245 10 10 18,400 230 35,925 371,125 -67,756 8,262,750 71,504,750

480 285 10 10 19,200 235 29,600 400,725 -38,156 6,956,000 78,460,750

500 240 10 10 20,000 235 32,000 432,725 -6,156 7,520,000 85,980,750

520 310 10 10 20,800 235 41,600 474,325 35,444 9,776,000 95,756,750

540 320 10 10 21,600 235 25,000 499,325 60,444 5,875,000 101,631,750

560 230 10 10 22,400 240 8,800 508,125 69,244 2,112,000 103,743,750

580 280 10 10 23,200 240 20,000 528,125 89,244 4,800,000 108,543,750

600 260 10 10 24,000 240 40,000 568,125 129,244 9,600,000 118,143,750

620 285 10 10 24,800 245 18,400 586,525 147,644 4,508,000 122,651,750

640 305 10 10 25,600 250 17,600 604,125 165,244 4,400,000 127,051,750

660 275 10 10 26,400 250 36,800 640,925 202,044 9,200,000 136,251,750

680 290 10 10 27,200 250 44,000 684,925 246,044 11,000,000 147,251,750

700 270 10 10 28,000 255 37,600 722,525 283,644 9,588,000 156,839,750

720 260 10 10 28,800 260 24,000 746,525 307,644 6,240,000 163,079,750

740 235 10 10 29,600 260 28,800 775,325 336,444 7,488,000 170,567,750

760 230 10 10 30,400 260 31,200 806,525 367,644 8,112,000 178,679,750

780 260 10 10 31,200 260 42,400 848,925 410,044 11,024,000 189,703,750

800 235 10 10 32,000 265 12,800 861,725 422,844 3,392,000 193,095,750

820 305 10 10 32,800 265 33,600 895,325 456,444 8,904,000 201,999,750

840 265 10 10 33,600 265 40,800 936,125 497,244 10,812,000 212,811,750

860 295 10 10 34,400 265 45,600 981,725 542,844 12,084,000 224,895,750

880 300 10 10 35,200 270 28,000 1,009,725 570,844 7,560,000 232,455,750

900 290 10 10 36,000 270 38,400 1,048,125 609,244 10,368,000 242,823,750

920 250 10 10 36,800 270 24,600 1,072,725 633,844 6,642,000 249,465,750

940 255 10 10 37,600 270 24,800 1,097,525 658,644 6,696,000 256,161,750

960 270 10 10 38,400 275 14,400 1,111,925 673,044 3,960,000 260,121,750

980 290 10 10 39,200 275 15,200 1,127,125 688,244 4,180,000 264,301,750

1,000 240 10 10 40,000 275 26,400 1,153,525 714,644 7,260,000 271,561,750

1,020 265 10 10 40,800 275 44,800 1,198,325 759,444 12,320,000 283,881,750

1,040 235 10 10 41,600 280 23,200 1,221,525 782,644 6,496,000 290,377,750

1,060 260 10 10 42,400 285 13,600 1,235,125 796,244 3,876,000 294,253,750
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Table 1 Sample center-pivot field evaluation data arranged in a spreadsheet to calculate DU with non-uniform container spacing

Unsorted values Sorted values Cumulative
weights

Deviation from
the low �

Weighted
catch

Cumulative
weighted catches

Dist from
center (ft)

Volume
(ml)

Dri Dro Weight Volume
(ml)

Weight

20 125 10 10 800 90 4,800 4,800 -434,081 432,000 432,000

40 185 10 10 1,600 115 7,200 12,000 -426,881 828,000 1,260,000

60 150 10 10 2,400 125 800 12,800 -426,081 100,000 1,360,000

80 155 10 10 3,200 125 6,400 19,200 -419,681 800,000 2,160,000

100 300 10 10 4,000 130 5,600 24,800 -414,081 728,000 2,888,000

120 90 10 10 4,800 130 8,000 32,800 -406,081 1,040,000 3,928,000

140 130 10 10 5,600 150 2,400 35,200 -403,681 360,000 4,288,000

160 125 10 10 6,400 155 3,200 38,400 -400,481 496,000 4,784,000

180 115 10 10 7,200 160 26,000 64,400 -374,481 4,160,000 8,944,000

200 130 10 10 8,000 170 25,800 90,200 -348,681 4,386,000 13,330,000

220 240 10 10 8,800 180 24,200 114,400 -324,481 4,356,000 17,686,000

240 320 10 10 9,600 180 25,600 140,000 -298,881 4,608,000 22,294,000

260 225 10 10 10,400 185 1,600 141,600 -297,281 296,000 22,590,000

280 215 10 10 11,200 185 26,200 167,800 -271,081 4,847,000 27,437,000

300 310 10 10 12,000 195 25,400 193,200 -245,681 4,953,000 32,390,000

320 265 10 10 12,800 195 26,400 219,600 -219,281 5,148,000 37,538,000

340 285 10 10 13,600 210 25,200 244,800 -194,081 5,292,000 42,830,000

360 275 10 10 14,400 215 11,200 256,000 -182,881 2,408,000 45,238,000

380 275 10 10 15,200 220 16,000 272,000 -166,881 3,520,000 48,758,000

400 220 10 10 16,000 225 10,400 282,400 -156,481 2,340,000 51,098,000

420 305 10 10 16,800 230 22,400 304,800 -134,081 5,152,000 56,250,000

440 250 10 10 17,600 230 30,400 335,200 -103,681 6,992,000 63,242,000

460 245 10 10 18,400 230 35,925 371,125 -67,756 8,262,750 71,504,750

480 285 10 10 19,200 235 29,600 400,725 -38,156 6,956,000 78,460,750

500 240 10 10 20,000 235 32,000 432,725 -6,156 7,520,000 85,980,750

520 310 10 10 20,800 235 41,600 474,325 35,444 9,776,000 95,756,750

540 320 10 10 21,600 235 25,000 499,325 60,444 5,875,000 101,631,750

560 230 10 10 22,400 240 8,800 508,125 69,244 2,112,000 103,743,750

580 280 10 10 23,200 240 20,000 528,125 89,244 4,800,000 108,543,750

600 260 10 10 24,000 240 40,000 568,125 129,244 9,600,000 118,143,750

620 285 10 10 24,800 245 18,400 586,525 147,644 4,508,000 122,651,750

640 305 10 10 25,600 250 17,600 604,125 165,244 4,400,000 127,051,750

660 275 10 10 26,400 250 36,800 640,925 202,044 9,200,000 136,251,750

680 290 10 10 27,200 250 44,000 684,925 246,044 11,000,000 147,251,750

700 270 10 10 28,000 255 37,600 722,525 283,644 9,588,000 156,839,750

720 260 10 10 28,800 260 24,000 746,525 307,644 6,240,000 163,079,750

740 235 10 10 29,600 260 28,800 775,325 336,444 7,488,000 170,567,750

760 230 10 10 30,400 260 31,200 806,525 367,644 8,112,000 178,679,750

780 260 10 10 31,200 260 42,400 848,925 410,044 11,024,000 189,703,750

800 235 10 10 32,000 265 12,800 861,725 422,844 3,392,000 193,095,750

820 305 10 10 32,800 265 33,600 895,325 456,444 8,904,000 201,999,750

840 265 10 10 33,600 265 40,800 936,125 497,244 10,812,000 212,811,750

860 295 10 10 34,400 265 45,600 981,725 542,844 12,084,000 224,895,750

880 300 10 10 35,200 270 28,000 1,009,725 570,844 7,560,000 232,455,750

900 290 10 10 36,000 270 38,400 1,048,125 609,244 10,368,000 242,823,750

920 250 10 10 36,800 270 24,600 1,072,725 633,844 6,642,000 249,465,750

940 255 10 10 37,600 270 24,800 1,097,525 658,644 6,696,000 256,161,750

960 270 10 10 38,400 275 14,400 1,111,925 673,044 3,960,000 260,121,750

980 290 10 10 39,200 275 15,200 1,127,125 688,244 4,180,000 264,301,750

1,000 240 10 10 40,000 275 26,400 1,153,525 714,644 7,260,000 271,561,750

1,020 265 10 10 40,800 275 44,800 1,198,325 759,444 12,320,000 283,881,750

1,040 235 10 10 41,600 280 23,200 1,221,525 782,644 6,496,000 290,377,750

1,060 260 10 10 42,400 285 13,600 1,235,125 796,244 3,876,000 294,253,750
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Table 2 MS Excel VBA function to calculate CU for non-uniform container spacing

Function PivotCU(Catch As Range, Dist As Range) As Double
'------------------------------------------------------------------------
' Center-pivot CU (%) by ASABE S436 with a general weighting factor.
'------------------------------------------------------------------------

Dim n As Integer
Dim Sumr As Double
Dim Sumdr As Double
Dim OuterSum As Double
Dim WeightAvg As Double
Dim deltaro, deltari As Double

'-----------------------------------------------------------
' Should have at least ten catch values.
' Should have the same number of rows for both data columns.
'-----------------------------------------------------------

If (Dist.Count < 11) Or (Catch.Count <> Dist.Count) Then
PivotCU = -100
Exit Function

End If

Dim Weight() As Double
ReDim Weight(Dist.Count)

'-----------------
' Inner summations
'-----------------

Sumr = 0
Sumdr = 0
OuterSum = 0

For n = 1 To Dist.Count
If n < 2 Then

deltari = (Dist(n + 1, 1) - Dist(n, 1)) / 2
Else

deltari = (Dist(n, 1) - Dist(n - 1, 1)) / 2
End If

If n = Dist.Count Then
deltaro = deltari

Else
deltaro = (Dist(n + 1, 1) - Dist(n, 1)) / 2

End If

Weight(n) = deltaro ^ 2 - deltari ^ 2

Weight(n) = Weight(n) + 2 * Dist(n, 1) * (deltaro + deltari)

Sumdr = Sumdr + (Catch(n, 1) * Weight(n))
Sumr = Sumr + Weight(n)

Next n

WeightAvg = Sumdr / Sumr

'----------------
' Outer summation
'----------------

For n = 1 To Dist.Count
OuterSum = OuterSum + Weight(n) * Abs(Catch(n, 1) - WeightAvg)

Next n

'-------------------------
' Return the CU in percent
'-------------------------

PivotCU = 100 * (1 - OuterSum / Sumdr)

End Function
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Appendix 2

See Table 3

Table 3 MS Excel VBA function to calculate DU for non-uniform container spacing

Public Function PivotDU(Catch As Range, Dist As Range) As Double
'------------------------------------------------------------------------
' Calculates DU (%) from center-pivot radial-leg catch data.
'------------------------------------------------------------------------

Dim n As Integer
Dim m As Integer
Dim Shift As Integer
Dim Index As Integer
Dim Minimum As Double

Dim Weight() As Double
Dim CatchCopy() As Double
Dim SortedCatch() As Double
Dim SortedWeight() As Double

'-----------------------------------------------------------
' Should have at least ten catch values.
' Should have the same number of rows for both data columns.
'-----------------------------------------------------------

If (Dist.Count < 11) Or (Catch.Count <> Dist.Count) Then
PivotDU = -100
Exit Function

End If

'----------------------
' Dimension the vectors
'----------------------

ReDim Weight(Dist.Count)
ReDim CatchCopy(Dist.Count)
ReDim SortedCatch(Dist.Count)
ReDim SortedWeight(Dist.Count)

'------------------
' Calculate weights
'------------------

For n = 1 To Dist.Count
If n < 2 Then
deltari = (Dist(n + 1, 1) - Dist(n, 1)) / 2

Else
deltari = (Dist(n, 1) - Dist(n - 1, 1)) / 2

End If

If n = Dist.Count Then
deltaro = deltari

Else
deltaro = (Dist(n + 1, 1) - Dist(n, 1)) / 2

End If

Weight(n) = deltaro ^ 2 - deltari ^ 2
Weight(n) = Weight(n) + 2 * Dist(n, 1) * (deltaro + deltari)

Next n

'---------------------------------------
' Sort the catch values from low to high
'---------------------------------------

For m = 1 To Dist.Count
CatchCopy(m) = Catch(m)

Next m

For m = 1 To Dist.Count

Shift = 0
Index = 0
Minimum = 99999999

For n = 1 To Dist.Count - m + 1
If (CatchCopy(n) <= Minimum) Then

Minimum = CatchCopy(n)
Index = n

End If
SortedCatch(m) = CatchCopy(Index)
SortedWeight(m) = Weight(Index)

Next n
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Table 3 continued

For n = 1 To Dist.Count - m
If (n = Index) Then

Shift = 1
End If
CatchCopy(n) = CatchCopy(n + Shift)
Weight(n) = Weight(n + Shift)

Next n
Next m

'-----------------------------
' Calculate cumulative weights
'-----------------------------

Weight(1) = SortedWeight(1)

For m = 2 To Dist.Count
Weight(m) = Weight(m - 1) + SortedWeight(m)

Next m

'----------------------

' Find index of low 1/4
'----------------------

Index = 0
Minimum = 99999999
Dim Quarter As Double
Dim Difference As Double

Quarter = Weight(Dist.Count) / 4

For m = 1 To Dist.Count
Difference = Weight(m) - Quarter
If Abs(Difference) < Minimum Then

Minimum = Abs(Difference)
Index = m

End If
If Difference > 0 Then

Exit For
End If

Next m

'---------------------------------------------
' Cumulative weighted catch at 1/4 of the area
'---------------------------------------------

Dim WeightedCatch As Double
Dim CumulativeWeightedCatch As Double

CumulativeWeightedCatch = 0

For m = 1 To Index
WeightedCatch = SortedWeight(m) * SortedCatch(m)
CumulativeWeightedCatch = CumulativeWeightedCatch + WeightedCatch

Next m

'-------------------------
' Return the DU in percent
'-------------------------

PivotDU = 100 * CumulativeWeightedCatch / Weight(Index)

For m = Index + 1 To Dist.Count
WeightedCatch = SortedWeight(m) * SortedCatch(m)
CumulativeWeightedCatch = CumulativeWeightedCatch + WeightedCatch

Next m

PivotDU = PivotDU * Weight(Dist.Count) / CumulativeWeightedCatch

End Function
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Defining the Z–R Relationship Using Gauge Rainfall
with Coarse Temporal Resolution: Implications

for Flood Forecasting
Punpim Puttaraksa Mapiam, Ph.D.1; Ashish Sharma, Ph.D.2; and Nutchanart Sriwongsitanon, Ph.D.3

Abstract: This paper demonstrates a procedure for deriving the Z–R relationship using poor temporal resolution gauge rainfall data and
evaluates its impact on runoff forecasting in the upper Ping River Basin in Northern Thailand. The procedure is based on the use of a scaling
logic to modify the Z–R relationship calibrated using daily (or other coarse) resolution ground rainfall data. This scaling procedure is dem-
onstrated using daily gauge data and results in radar rainfall estimates that lead to improved runoff simulations and flood forecasts for the
upper Ping River Basin compared with the case in which the daily (or raw) Z–R relationship is used or even when the daily gauge rainfall is
used alone. This evaluation is based on hourly comparisons for the high rainfall season over a period of 3 years (2004–2006) at six point
locations in the catchment. This scaling relationship has significant implications for flood modeling in most of the developing world that has
weather radar coverage and a daily gauge network but a limited continuous ground rainfall measuring network. DOI: 10.1061/(ASCE)HE
.1943-5584.0000616. © 2014 American Society of Civil Engineers.

Author keywords: Radar rainfall; Rain gauge rainfall; Runoff estimation; Scaling.

Introduction

Measured rainfall is a significant input in any hydrological model-
ing application. Weather radars have developed into viable alterna-
tives to ground-measured rainfall because of their ability to sample
in space and time (Seed and Austin 1990; Collinge and Kirby 1987;
Sun et al. 2000; Uijlenhoet 2001; Vieux 2003), especially in re-
gions with limited ground rainfall measuring networks (Yang et al.
2004; Segond et al. 2007). A number of studies vouch for the effi-
cacy of radar rainfall for flood estimation and forecasting as an al-
ternative to a sparse or poor ground rain-gauge network (Wyss et al.
1990; Pessoa et al. 1993; Borga et al. 2000; Sun et al. 2000; Morin
et al. 2009; Anquetin et al. 2010), although it is considered useful to
have a minimal ground rain-gauge network to assist with the speci-
fication and update of the radar reflectivity-rainfall relationship
(or the Z–R relationship) (Chumchean et al. 2006a, b). This paper
demonstrates an alternative for specifying the Z–R relationship in
regions having only daily or coarser resolution ground rainfall
data and evaluates the advantages that result when used for flood
modeling applications.

Use of a power-law Z–R relationship [Z ¼ ARb where Z is radar
reflectivity (mm6 m−3); R is the rainfall rate (mmh−1); and A and b
are parameters], calibrated against ground rainfall data located
within the radar coverage, is the traditional approach for radar

rainfall estimation (Battan 1973; Rinehart 1991; Doviak and Zrnic
1992; Collier 1996; Krajewski and Smith 2002).

The conventional approach to specifying the relationship (or the
parameters A and b) is to use the gauge rainfall data at the finest
resolution available and aggregate the radar rainfall to the same
resolution. The resulting Z–R relationship is then assumed to be
valid for use at other temporal resolutions and is often used to as-
certain radar rainfall at much finer resolutions than the available
gauge data. This assumption has been put into question by Mapiam
et al. (2009), with data from three radar locations and their asso-
ciated dense rain-gauge networks all pointing to the need for a
transformation for the A parameter of the Z–R relationship as a
function of the time resolution at which the rainfall is to be esti-
mated. Mapiam et al. (2009) goes further and proposes a transfor-
mation function for the A parameter of the Z–R relationship, which
is shown to be stable across the three regions at which it is tested.
Although the need for the preceding transformation appears justi-
fied when there is a mismatch in the temporal scales at which the
Z–R relationship is derived and used, its impact on flow estimation
has not been previously studied.

The question that arises is whether the aforementioned scaling
transformation enables better assessment of peak flow events in a
typical catchment and the radar rainfall could be applied for flood
forecasting purposes. This paper investigates the relative benefits
offered by the use of alternate rainfall estimation methods for sim-
ulation of the runoff hydrograph in the upper Ping River Basin,
Thailand. Daily gauge rainfall and two products of radar rainfall
were specified as inputs to the selected rainfall-runoff model for
runoff simulation. The daily gauge rainfall (DGR) was spatially
averaged by using the Thiessen polygon approach over the study
region to form the first of the evaluated rainfall input alternatives.
The first radar rainfall product, the hourly radar rainfall (HRR), was
ascertained using the climatological daily Z–R relationship pro-
posed by Mapiam and Sriwongsitanon (2008) to convert instanta-
neous radar reflectivity into radar rainfall intensity, followed by
accumulating the instantaneous radar rainfall into hourly radar
rainfall by using the algorithm proposed by Fabry et al. (1994).
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The second radar rainfall product was formulated by applying the
scaled transformation equation introduced by Mapiam et al. (2009)
to transform the daily A parameter of the Z–R relationship to an
hourly Z–R relationship. The hourly scale-transformed Z–R rela-
tionship was then used to calculate hourly radar rainfall (HRRS).
The DGR, HRR, and HRRS were used as the three alternative
rainfall inputs to the catchment simulation model for hourly flow
estimation at six runoff stations in the study area. For ease of com-
parison across the various methods, the DGR was assessed at
hourly time steps by considering hourly rain depths equal to
1=24 of the daily rainfall before inputting into the hydrological
model. A summary of the rationale behind the three data sets,
along with the benefits and drawbacks one could exert a priori,
is outlined in Table 1. The HRR and HRRS allow a direct com-
parison of the quality of radar rainfall to the daily gauge data
(DGR) that is available, whereas the hourly products (HRR and
HRRS) allow an assessment of whether the scaling logic results
in an improvement of the radar rainfall at finer timescales. Results
of flow estimated using these three rainfall products were finally
compared for their accuracy and effectiveness in the context of
flood forecasting.

The next section describes the study area and data collection,
followed by a description of the unified river basin simulator
(URBS), the rainfall-runoff model used for runoff estimation.
The methodology for estimating the three rainfall products is
discussed next, followed by a description of the application of
the URBS model for runoff estimation and an evaluation of
simulated runoff hydrographs using the various rainfall inputs.
Finally, the conclusions from the study are drawn in the last
section.

Study Area and Data Collection

Study Area

The study area is the upper Ping River Basin, which is situated
between latitude 17°14′30″ to 19°47′52″ N, and longitude 98°4′30″
to 99°22′30″ E in northern Thailand (Fig. 1). It covers the area
of approximately 25,370 km2 across the provinces of Chiang
Mai and Lam Phun. Approximately 80% of the basin is moun-
tainous. The basin landform ranges from an undulating to a roll-
ing terrain. The Ping River originates in the Chiang Dao District
in the north of Chiang Mai and flows downstream to the south
to become the inflow for the Bhumiphol Dam, which is a large
dam in Doi Tao District in Chiang Mai and has an active storage
capacity of 9.7 billionm3. The average annual rainfall and
runoff of the catchment are approximately 1,170 and 270 mm,
respectively.

Radar Reflectivity Data

Radar reflectivity data recorded from the Omkoi radar, owned and
operated by the Bureau of Royal Rainmaking and Agricultural
Aviation (BRRAA), was used for radar rainfall estimation in the
study subcatchments of the upper Ping River Basin. The Omkoi
radar is an S-band Doppler radar which transmits radiation with
a wavelength of 10.7 cm and produces a beam width of 1.2°. After
preprocessing, the used radar reflectivity data are provided in a
Cartesian grid of 480 × 480 km extent with a 1-km2 spatial reso-
lution and 6-min temporal resolution. The radar reflectivity data
provided by the BRRAA are pseudo-CAPPI reflectivities derived
from the 2.5-km constant altitude plan position indicator (CAPPI)
data at a range within 135 km from the radar site, from the lowest
plan position indicator (PPI) (0.6°) beyond the 136 km range.

Reflectivity, gauge rainfall, and runoff data recorded at the same
period were required for the analysis of this study. Three 2.5-km
pseudo-CAPPI reflectivity data sets from the Omkoi radar during
the rainy seasons for three years (June–October 2003, May–
September 2004, and May–July 2005) were used in this study.

Because S-band reflectivity data were used in this study, beam
attenuation was assumed to be insignificant (Hitschfeld and Bordan
1954; Delrieu et al. 2000). To avoid the effect of bright band and
different observation altitude in the measured radar reflectivity, the
pseudo-CAPPI reflectivity data that lie within the range where the
height of the base scan beam center (0.6°) is below the climatologi-
cal freezing level of Chaing Mai [approximately 4.9 km, according
to Silverman and Sukarnjanaset (2000)] was used in the analysis.
The maximum observation range that gives the height of the base
scan beam center below the freezing level of 4.9 km is approxi-
mately 160 km. Thus, only reflectivity data that lie within 160 km
of the radar were used in the analysis. Consequently, the reflectivity
data used in this study were considered to be free from the effects of
bright band and different observation altitudes.

To avoid the effect of noise and hail in the measured radar
reflectivity, reflectivity values less than 15 dBZ were assumed to
represent a reflectivity of 0 mm6 m−3, and those greater than
53 dBZ were assumed to equal 53 dBZ. Because the study area
is mountainous, the errors attributable to the effect of ground clut-
ter, beam blocking, and variations in the vertical profile of reflec-
tivity (VPR) are potentially important. The effect of ground clutter
and beam blocking were addressed by finding the clutter locations,
where high persistence in the reflectivity is exhibited, blocking this
area from the radar map, and then replacing the blocked locations
with interpolated data from surroundings pixels that are not affected
by clutter and beam blocking. Although variations in the VPR can
impact the estimation of radar rainfall (Chumchean et al. 2008),
lack of information about the VPR required the assumption that
its impact was not systematic and would not impact the conclusions
this study sought to draw.

Table 1. Summary of the Rainfall Data Products Evaluated

Rainfall
product Rationale Benefits and drawbacks

DGR Spatially averaged daily gauge rainfall, assessed at both daily and
hourly scales (hourly transformation performed using equal hourly
depths)

Use of crude disaggregation scheme to hourly is likely to lead to
smaller peaks in resulting flood hydrograph; daily results expected to
result in accurate outputs except for their inability to pick subdaily
peaks

HRR Using the same Z–R parameters based on daily gauge data and then
accumulated into hourly radar rainfall

The use of hourly radar rainfall offers a big improvement in the
subdaily temporal representation compared with the daily gauge
rainfall product

HRSS Same as HRR, except that the radar parameters are scaled to an hourly
time step using the transformation function proposed by Mapiam et al.
(2009)

Application of more suitable Z–R parameters than HRR can lead to
improvement of the accuracy on hourly radar rainfall estimates and the
resulting flow hydrographs
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Ground Rainfall Data

There are 35 rain gauges located within 160 km of the Omkoi radar.
These rain gauges are owned and operated by the Royal Irrigation
Department (RID) and the Thai Meteorological Department
(TMD). Thirty-two stations are nonautomatic stations that provide
daily rainfall data, whereas only three rain gauges are automatic
stations. Because most of the gauges located inside and around
the project area are daily rain gauges, three sets of daily rain-gauge
rainfall data obtained from the network of 35 gauges for the same
period as the reflectivity data were used in this study. Quality con-
trol of these rain-gauge rainfall data was performed by considering
rainfall data from adjacent gauges and ensuring consistency in the
ensuing double mass curves. If unusual rainfall data were found,
these were excluded from the analysis.

Runoff Data

Continuous runoff data recorded from the six runoff stations
located in the upper Ping River Basin—P.21, P.71, P.14, P.24A,
P.77, and P.73—were used for model implementation in this study.
These stations are located within 160 km of the Omkoi radar, and
they have the catchment areas of 510, 1,727, 3,853, 454, 544, and
2,242 km2, respectively. P.73 is actually the most downstream of
the runoff stations P.1, P.5, P.71, P.77, P.76, and P.24A of the study
area with the whole catchment area of approximately 12,910 km2.
To avoid error in radar rainfall estimates resulting from the effects
of bright band and different observation altitudes, only a partial
catchment area of the P.73 (2,242 km2) located within the

160 km radar range (excluding the area of upstream runoff stations
P.1, P.5, P.71, P.77, P.76, and P.24A) were therefore considered in
the rainfall-runoff process in the study. Continuous runoff data
from its five upstream stations were also collected to be used as
inflow data during model simulation on P.73. All the runoff stations
used in the analysis are owned and operated by the RID. The in-
stantaneous runoff data at all stations collates flows on an hourly
basis, at the same periods as the reflectivity and rain-gauge rainfall
data, which were used in the analysis presented subsequently.

URBS Model

The unified river basin simulator (URBS) developed by Carroll
(2007)was chosen for runoff simulation for the current study. URBS
is a semidistributed nonlinear rainfall runoff routing model that can
account for the spatial and temporal variation of rainfall. This model
is based on research by Laurenson and Mein (1990) and has been
used extensively for flood forecasting by the Australian Bureau of
Meteorology and by the Chiangjiang (Yangtze) Water Resources
Commission in China (Malone et al. 2003; Jordan et al. 2004).
In the context of the study region, Mapiam and Sriwongsitanon
(2009) used the URBS model for flood estimation on the gauged
catchments in the upper Ping River Basin and later formulated some
relationships for use on the ungauged catchments of the basin.

The Split module—a runoff routing module of the URBS
model—was individually used for runoff estimation for the six run-
off stations (P.21, P.71, P.14, P.24A, P.77, and P.73). The hypothesis
of the Split module is that the rainfall excess on a subcatchment,

Fig. 1. The upper Ping River Basin and the locations of the radar, rain gauges, and runoff stations in the universal transverse mercator (UTM)
coordinate system

catchmen
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estimated by rainfall-runoff–loss models, is routed through the
catchment storage, located at the centroid of that subcatchment,
to the channel using a catchment routing relationship. Thereafter,
outflow from the catchment storage, which is the inflow of channel
storage (Qu), will be routed along a reach (distance from the cent-
roid to the outlet of the corresponding subcatchment) to the next
downstream subcatchment, using the Muskingum method. In this
study, flow components of the catchment and channel routing were
calculated by using simplified equations as shown in Eqs. (1) and
(2), respectively [see Carroll (2007) for the details on full equations]

Scatch ¼ β
ffiffiffiffi
A

p
Qm ð1Þ

where Scatch = catchment storage (m3s−1 h) of each subcatchment;
β = catchment lag parameter (h=km) for each subcatchment;
A = area of subcatchment (km2); m = dimensionless catchment
nonlinearity parameter; and Q = outflow of catchment storage
(m3=s) of the corresponding subcatchment

Schnl ¼ αL½xQu þ ð1 − xÞQd� ð2Þ
where Schnl = channel storage (m3s−1 h) for each subcatchment; α =
channel lag parameter (h=km) for each subcatchment; L = length of
a reach (km) considered in channel routing;Qu = inflow at upstream
end of a reach [includes subcatchment inflow, Q, calculated using
Eq (1)];Qd = outflow at downstream end of a channel reach (m3s−1)
of the corresponding subcatchment; and x =Muskingum translation
parameter.

The excess rainfall estimation on each subcatchment was calcu-
lated using the initial loss-proportional runoff model (IL-PR) for
pervious area and the spatial infiltration model for impervious area
assessment. The assumption of the IL-PR model is that the accu-
mulated rainfall depth starting from the beginning of a simulation
period (Ri) will be deducted by an initial loss (mm) until the Ri
exceeds the maximum initial loss (IL in mm). The proportional loss
using proportional runoff coefficient (pr, dimensionless) will later
be applied for an assessment. The pervious excess rainfall depth at
time t (Rper

t ) is given by

Rper
t

¼

8><
>:
0 if Ri ≤ IL

ðRi− ILÞ− ð1− prÞðRi− ILÞ if Ri > ILand ili−1 < IL

ðRi−Ri−1Þ− ð1− prÞðRi−Ri−1Þ if Ri > ILand ili−1 ¼ IL

9>=
>;

ð3Þ

Ri ¼ Rtot
t þ Ri−1 ð4Þ

where Rtot
t = rainfall depth during a time interval (Δt), which is

1 hour in this study. The accumulated initial loss at time t (ili),
can be described as

ili ¼
�
Ri if Ri ≤ IL

IL if Ri > IL

	
ð5Þ

The effective fraction of the area that is impervious (feff ) is
given by Eq. (6)

feff ¼ fu þ Ft

Fmax
; MaxðfeffÞ ¼ 1 ð6Þ

where fu = existing fraction of the impervious area (fu ¼ 0 is as-
sumed for this study); Ft = cumulative infiltration into the pervious
area starting from the beginning of a simulation period; and Fmax =
maximum infiltration capacity of the subcatchment (IF parameter).

Excess rainfall (Rt) at time t on the corresponding subcatchment
can be calculated using Eq. (7)

Rt ¼ feffCimpRtot
t þ ð1 − feffÞRper

t ð7Þ
where Cimp = impervious runoff coefficient (the default is 1); and
Rper
t = calculated using the IL-PR model.
As the URBS model equations have been simplified, there are

seven model parameters necessary for the application. These
parameters are: (1) the channel lag parameter (α); (2) the catchment
nonlinearity parameter (m); (3) the Muskingum translation param-
eter (x); (4) the catchment lag parameter (β); (5) the initial loss (IL);
(6) the proportional runoff coefficient (PR); and (7) the maximum
infiltration rate (IF). However, as the parameters m and x do not
vary significantly from 0.8 and 0.3, respectively (Carroll 2007;
Jordan et al. 2004), both parameters were fixed at these values
in our study. As a result, only five model parameters were necessary
to specify on each subcatchment for further application in the study.
The parameters α and β are related to the runoff routing behavior,
and the parameters IL, PR, and IF are related to rainfall loss
estimation.

To implement the URBS model for runoff estimation, the catch-
ments corresponding to runoff stations P.21, P.71, P.14, P.24A,
P.77, and P.73 (Fig. 1) were divided into a number of subcatch-
ments (5, 15, 25, 5, 5, and 14, for each of the preceding main sub-
catchments, respectively). Each subcatchment was selected so as to
have similar size (sizes varied between 90 and 160 km2) and char-
acteristics. For each runoff station, the total rainfall for each sub-
catchment was estimated using three alternatives as described
subsequently. The total rainfall and a set of model parameters as-
sociated with each subcatchment were then used to simulate the
runoff hydrograph at the corresponding runoff station. Based on
an assumption of the URBS model, it is necessary to define the
five model parameters on each subcatchment. However, because
there is no runoff station located in other upstream subcatchments
of the six runoff stations, this becomes a difficult task. Conse-
quently, all subcatchments of each runoff station are considered
to have a uniform set of parameters. These model parameters
can be, and are usually, obtained by model calibration as explained
in “Assessment of Model Parameters.”

Catchment Rainfall Estimation

Three products of catchment rainfall (DGR, HRR, and HRRS) for
the three periods were ascertained to serve as the input data for the
URBS model for runoff estimation at the six runoff stations. The
products of daily rainfall (DGR) were assessed at both a daily time-
scale and also disaggregated to hourly by considering constant
hourly rain rates along the day before inputting into the URBS
model. The calculated rainfall during June–October 2003 was used
for model calibration, and May–September 2004 and May–July
2005 were used for model verification. Methods used for catchment
rainfall estimation are explained next.

Estimation of Daily Gauge Rainfall

Rain gauge rainfall data has generally been used to estimate areal
rainfall and then used as the input data to a rainfall-runoff model for
runoff and flood estimation. The DGR was spatially averaged using
the Thiessen polygon approach (Chow et al. 1988; Bae et al. 2008)
over the study region to form the first of the rainfall input alterna-
tives evaluated. Jiang et al. (2007) suggested that although many
methods are available for estimating mean areal rainfall such
as splines (regularized and tension), inverse distance weightingweighting
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(IDW), trend surface, and kriging, Thiessen polygon approach has
been selected for estimating mean areal rainfall over application
areas such as the Dongjiang Basin in south China. This is primarily
because this approach is probably the most common approach for
modeling the spatial distribution of rainfall and it is known to pro-
vide good results when used for relatively dense networks (Naoum
and Tsanis 2004). The approach has been widely used in many ap-
plications (Panigrahy et al. 2009; Bhat et al. 2010), including for
radar rainfall estimation (Wu et al. 2008). Furthermore, as the
model used in this study requires rainfall inputs at the subcatchment
level (and not at a pixel level), the added sophistication of the grid-
based rainfall interpolation approaches is not considered warranted.

In this research, 35 daily rain gauges located within and around
the upper Ping River Basin were used to construct the Thiessen
polygons. DGR for each subcatchment was calculated by multipli-
cation of the daily gauge rainfall and its corresponding weighting
factor from the associated polygon.

Estimation of Hourly Radar Rainfall

Various forms of Z–R relationships (Z ¼ ARb) for ascertaining
radar rainfall have been suggested in the literature (Marshall and
Palmer 1948; Joss and Waldvogel 1970; Battan 1973; Atlas et al.
1999; Uijlenhoet et al. 2003; Lee and Zawadzki 2005). However,
these relationships cannot be directly applied in all regions because
the A and b parameters of the Z–R relationship vary depending on
many factors, including their dependence on the rainfall drop size
distribution (DSD), which varies in both space and time. Typical
values of the multiplicative term A may range from 31 to 500
(Battan 1973; Seed et al. 1996, 2002; Steiner et al. 1999), whereas
the exponent b varies from 1 to 3 (Smith and Krajewski 1993), with
typical values between 1.2 and 1.8 (Battan 1973; Ulbrich 1983).
Because daily rain-gauge rainfall data are the finest resolution
available in the upper Ping River Basin, Mapiam and Sriwongsi-
tanon (2008) then developed a climatological Z–R relationship
(Z ¼ 74R1.6) based on daily data for radar rainfall estimation in
the upper Ping River Basin. This equation is unavoidably used
to assess radar rainfall at finer resolution than the available
gauge data.

To assess HRR, the daily Z–R relationship (Z ¼ 74R1.6) was
used to convert three instantaneous radar reflectivity data sets
of the Omkoi radar into instantaneous radar rainfall intensity. This
derived instantaneous radar rainfall at all pixels located in the six
gauged catchments was then accumulated into HRR by using the
accumulation method proposed by Fabry et al. (1994). The HRR
for each subcatchment was estimated by averaging radar rainfall of
all pixels located within a considered subcatchment, using a simple
arithmetic averaging method.

Estimation of Hourly Radar Rainfall using the Scaling
Transformation Equation

The A parameter of the Z–R relationship tends to decrease with a
decrease in the rainfall temporal resolution used to develop the re-
lationship. Application of daily (24-h) Z–R relationship to estimate
radar rainfall at finer temporal resolutions, especially at hourly
scale, can give significant error on extreme rainfall estimates
(Mapiam et al. 2009). To reduce this error, Mapiam et al. (2009)
proposed a climatological scaling transformation equation for con-
verting the A parameter that was calibrated using daily data to finer
resolutions as

At ¼
�

t
24

�−0.055
A24 ð8Þ

where t=24 = scale factor; t (h) = temporal resolution at which the
rainfall needs to be estimated; 24 (h) = reference temporal resolu-
tion of the radar rainfall; 0.055 = scaling exponent; and A24 and
At represent the parameter A in Z–R relationship at 24- and t-h res-
olutions, respectively.

From the results of Mapiam et al. (2009), it was evident that the
proposed scale- transformed equation of the Z–R relationship was
valid for the S-band radar and also exhibited significant improve-
ments in estimating extreme rainfall at finer temporal resolutions.
Therefore, the proposed scaling transformation equation in Eq. (8)
was used to estimate a scale-transformed hourly A parameter. The
scale-transformed hourly A parameter (A1) was estimated as

ðA1Þ ¼
�
1

24

�−0.055
ðA24Þ ð9Þ

The estimated scale-transformed hourly Z–R relationship
(Z ¼ 88R1.6) was used to convert instantaneous reflectivity data
into rainfall rate; thereafter, the instantaneous radar rainfall was
accumulated into an HRRS using the Fabry et al. (1994) method.

Application of the URBS Model for Runoff
Estimation

Assessment of Model Parameters

The URBS model was used to estimate hourly runoff hydrograph at
six runoff stations (P.21, P.71, P.14, P.24A, P.77, and P.73) by using
three rainfall products (DGR, HRR, and HRRS) as the input data.
One data set of radar reflectivity and rain-gauge data during June–
October 2003 were used in the model calibration (Fig. 2 is an ex-
ample of a time series of the three rainfall products at the runoff
station P.14). Model parameters of each runoff station were there-
fore analyzed individually for each rainfall product using the model
calibration process. Model calibration was carried out by adjusting
the five model parameters (α, β, IL, PR, and IF) until the optimal fit
between the observed and calculated hydrographs at each runoff
station was satisfied.

To reach the optimal set of model parameters corresponding to
each rainfall product at each runoff station, a grid-based parameter
search was used. The detailed methodology is described as follows:
1. Specify a uniform assessment point of each model parameter

covering the associated range for each grid to be used for the
URBS model simulation as presented in Table 2. In this re-
search, 21,870 parameter combinations were assessed at each
runoff station.

Fig. 2. Comparison of the three hourly rainfall products for the runoff
station P.14 during the calibration period
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2. By using each rainfall product as the input data for each runoff
station, every parameter set was individually applied to the
URBS model to estimate the hourly flow hydrographs. Overall
root mean square error (RMSE) between the calculated and
measured discharges for each simulation case was then as-
sessed using the following:

RMSE ¼
�PN

i¼1 ðQm;i −Qc;iÞ2
N

�
0.5

ð10Þ

where Qm;i denotes the observed discharge at time i; Qc;i =
calculated discharge at time i; and N = number of data points.

3. Estimate the optimal parameter set for each rainfall product at
each runoff station evaluated by minimizing the RMSE for all
simulation cases.

The results of model calibration explicitly show that the model
parameters change with rainfall products (depending upon the rain-
fall depths and their distribution) and runoff station as presented in
Table 3. According to the results, which show high variations be-
tween ground and radar rainfall products (e.g., Fig. 2) resulting in
significant differences of model parameters between the DGR and
the HRR and HRRS. On the other hand, smaller differences of the
model parameters exist between HRR and HRRS because the dis-
tribution of these rainfall products is the same but the difference is
only that the depth of HRR is higher than HRRS by the factor of
approximately 1.12 (caused by the scaled Z–R relationship).

By using these calibrated parameters for runoff estimation for
the chosen flow periods, the outcomes of model calibration iden-
tified by RMSE for each runoff station and each rainfall product are
summarized in Table 4. Fig. 3 illustrates the time series plots com-
paring the observed and calculated flow hydrographs using differ-
ent rainfall products at the runoff station P.24A. A comparison on
runoff accuracy in model applications using different rainfall prod-
ucts are discussed in “Evaluation of Simulated Runoff Hydrographs
Using Alternate Rainfall Inputs.”

Table 2. Model Parameter Values Used for Creating 21,870 Parameter
Combinations for Model Calibration

Runoff station
using the
parameters

Model parameter values used
in calibration process

α β IL (mm) PR IF (mm)

P.21, P.71, P.77, 0.1 5 0 0.05 700
P.24A, and P.14 0.2 6 10 0.07 800
— 0.3 7 20 0.09 900
— 0.4 8 30 0.11 1,000
— 0.5 9 40 0.13 1,100
— 0.6 — 50 0.15 1,200
— — — 60 0.17 1,300
— — — 80 0.19 1,400
— — — 100 0.21 1,500
P.73 0.1 5 0 0.19 300
— 0.2 6 10 0.21 400
— 0.3 7 20 0.23 500
— 0.4 8 30 0.25 600
— 0.5 9 40 0.27 700
— 0.6 — 50 0.29 800
— — — 60 0.31 900
— — — 80 0.33 1,000
— — — 100 0.35 1,100

Table 3. Model Parameters for Six Runoff Stations and Three Rainfall
Products

Runoff
station

Rainfall
product

Control parameters for the URBS model

α β IL PR IF

P.21 DGR 0.5 5 40 0.07 700
HRR 0.5 6 0 0.17 700
HRRS 0.5 6 0 0.19 700

P.71 DGR 0.5 9 100 0.05 700
HRR 0.3 5 50 0.13 700
HRRS 0.3 5 50 0.17 900

P.77 DGR 0.1 8 80 0.09 1,500
HRR 0.4 6 0 0.05 1,200
HRRS 0.5 6 10 0.07 1,200

P.24A DGR 0.5 9 60 0.17 700
HRR 0.2 5 10 0.09 1,400
HRRS 0.2 5 10 0.11 1,300

P.73 DGR 0.1 8 30 0.23 700
HRR 0.2 5 30 0.31 500
HRRS 0.2 5 30 0.33 500

P.14 DGR 0.2 8 100 0.09 1,200
HRR 0.1 6 0 0.17 1,500
HRRS 0.1 5 0 0.19 1,500

Table 4. RMSE during the Calibration and Verification Periods for Each
Runoff Station and Each Rainfall Product

Runoff
station

Rainfall
product

RMSE (m3=s)

Calibration period Verification period

(2003) (2004) (2005)

P.21 DGR 2.710 4.678 3.019
HRR 3.465 3.547 4.320
HRRS 3.479 3.462 3.826

P.71 DGR 7.280 9.946 15.696
HRR 6.271 11.349 14.409
HRRS 6.265 10.959 14.559

P.77 DGR 1.818 2.816 4.535
HRR 1.521 2.793 4.627
HRRS 1.516 2.809 4.645

P.24A DGR 2.760 4.230 3.980
HRR 2.370 4.063 2.955
HRRS 2.365 4.060 3.068

P.73 DGR 59.504 51.470 39.441
HRR 51.963 65.590 55.718
HRRS 53.823 58.523 47.307

P.14 DGR 12.745 22.342 37.434
HRR 15.608 36.206 22.156
HRRS 15.368 34.879 22.101

Fig. 3. Comparison of hourly observed and calculated flow hydro-
graphs at the runoff station P.24A during the calibration periodriod
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Verification of the Calibrated Model Parameters

The verification process was carried out in this study to provide
more data sets to be used for the comparison of the accuracy
among different rainfall products and to ensure that the same data
set of the calibrated model parameters can be applied for other
rainfall events. Data during the periods May–September 2004
and May–July 2005 were used for an assessment. Results of
RMSE between the calculated and measured discharges for each
runoff station and each rainfall product during these two periods
are also summarized in Table 4, which shows that the accuracy of
the calculated flow hydrographs for the verification period reduce
compared with the results gained during the calibration period as
shown by increasing RMSE values. This is to be expected because
model parameters for the verification process cannot be changed to
minimize RMSE between the calculated and measured discharges
for each simulation case. Selected time series plots comparing

hourly observed and calculated flow hydrographs during the
verification period in 2004 at runoff station P.24A are presented
in Fig. 4.

Evaluation of Simulated Runoff Hydrographs Using
Alternate Rainfall Inputs

The three rainfall alternatives to be used as inputs were evaluated
for the simulation of flow hydrographs over the upper Ping River
Basin. Within those three rainfall inputs, any rainfall product that
can simulate a flow hydrograph closest to the observed hydrograph
was defined as the most suitable. To accomplish this objective, the
model structure (including model parameters) for each rainfall
product was kept the same; then the rainfall input was changed
to observe the differences that resulted. To ensure an unbiased out-
come from the study, the model evaluation was performed using
each set of model parameters to simulate three sets of flow hydro-
graphs using the three rainfall products as the input data. Hence, the
model was run 3 × 3 (nine) times for each runoff station and each
data period. The RMSE was the statistical measure to evaluate the
accuracy of the overall hydrograph for each simulation case. A
summary of the performance of all simulation cases is presented
in Table 5, which shows that for the overall 54 simulation cases,
there are 31 (57%), 12 (33%), and 11 (31%) cases of the HRRS,
HRR, and DGR, respectively, that can produce the minimum
RMSE among each case. The Table 5 also presents the total average
of the RMSE of each rainfall product for all parameter sets and
simulation periods (RMSE on the same row). It shows five runoff
stations (P.21, P.71, P.77, P.73, and P.14) where HRRS provided the
minimum RMSE. Only at the runoff station P.24A is the minimum
RMSE produced by DGR, but its RMSE is very close to that pro-
duced by HRRS (3.439 and 3.616, respectively). On the other hand,
there are four runoff stations (P.21, P.71, P.73, and P.14) where
DGR provided the maximum RMSE. There are only two runoff
stations (P.77 and P.24A) where the maximum RMSE is produced
by HRR. Table 5 also shows the percentage increment of the aver-
age RMSE from the minimum RMSE of any rainfall product at

Fig. 4. Comparison of hourly observed and calculated flow hydro-
graphs at the runoff station P.24A during the verification period

Table 5. Comparison of Model Performance in Runoff Estimation Using Three Different Rainfall Products

Gauge
station

Rainfall
product

RMSE (m3=s) of each parameter set used for flow simulation Increment of
average RMSE

from the
minimum
RMSE (%)

Calibration period Verification period

Total
average

2003 2004 2005

DGR HRR HRRS DGR HRR HRRS DGR HRR HRRS

P.21 DGR 2.710 4.848 5.528 4.678 8.504 9.364 3.019 5.435 6.141 5.581 55
HRR 4.398 3.465 3.508 3.763 3.547 3.811 2.249 4.320 5.033 3.788 5
HRRS 4.673 3.532 3.479 4.068 3.342 3.462 2.670 3.267 3.826 3.591 0

P.71 DGR 7.280 15.648 18.825 9.946 20.248 23.530 15.696 31.760 36.002 19.882 118
HRR 10.614 6.271 6.727 7.211 11.349 13.488 4.578 14.409 17.548 10.244 12
HRRS 11.711 6.545 6.265 7.603 9.239 10.959 3.614 11.689 14.559 9.132 0

P.77 DGR 1.818 2.036 1.968 2.816 2.209 2.791 4.535 3.960 4.654 2.976 6
HRR 1.762 1.521 1.614 2.790 2.793 3.315 5.462 4.627 5.605 3.277 16
HRRS 1.709 1.621 1.516 2.280 2.412 2.809 4.505 3.823 4.645 2.813 0

P.24A DGR 2.760 3.575 3.386 4.230 3.313 3.498 3.980 2.861 3.350 3.439 0
HRR 4.650 2.370 2.501 7.762 4.063 4.798 5.192 2.955 3.609 4.211 22
HRRS 3.798 2.488 2.365 6.379 3.548 4.060 4.269 2.574 3.068 3.616 5

P.73 DGR 59.504 63.192 61.256 51.470 65.391 67.391 39.441 62.888 63.475 59.334 15
HRR 58.464 51.963 57.527 52.252 65.590 67.590 33.896 55.718 57.806 55.645 8
HRRS 60.610 56.012 53.823 48.863 60.523 58.523 28.794 50.189 47.307 51.627 0

P.14 DGR 12.745 40.021 48.297 22.342 54.424 63.139 37.434 76.423 87.044 49.097 101
HRR 29.280 15.608 16.378 23.450 36.206 40.967 22.857 22.156 24.535 25.715 5
HRRS 31.536 16.018 15.368 23.427 31.055 34.879 24.580 20.523 22.101 24.388 0

Note: Stations where HRRS provided the minimum RMSE are indicated in bold font; stations where DGR provided the maximum RMSE are italic font.Note: Sta
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each runoff station. At four runoff stations (P.21, P.71, P.73, and
P.14), the DGR generated the increment percentage of approxi-
mately 55, 118, 15, and 101, respectively, which are quite high in
most cases. On the other hand, there are two stations (P.77 and
P.24A) where HRR generated a lower increment percentage of ap-
proximately 16 and 22, respectively, compared with the increment
percentage that DGR generated. This is especially true for the
HRRS that generated very little increment percentage of approxi-
mately 5% only at the runoff station P.24A. Finally, the comparison
of RMSE values of the three rainfall inputs for different simulation
cases at the six runoff stations is shown in Fig. 5, which presents the
RMSE of each rainfall product for all parameter sets and simulation
periods (RMSE on the same row) at each particular runoff station.
Fig. 5 has confirmed that HRRS can generate a lower RMSE be-
tween the calculated and measured discharges for each simulation
case compared with RMSE generated by HRR; this is especially the
case with respect to that generated by DGR. The preceding results
demonstrate that HRRS calculated by applying the scaling trans-
formation equation to the daily Z–R relationship leads to the most
appropriate rainfall data set for runoff simulation. This is a further
validation of the scaling results that were presented by Mapiam
et al. (2010), pointing to the need to further ascertain the specific
reasons that lead to the scaling rule being applicable.

Conclusions

Radar rainfall data can provide higher spatial and temporal resolu-
tion compared with rain-gauge measurements (AghaKouchak et al.
2010). Such higher resolutions have been known to lead to im-
provements in the accuracy of the resulting runoff sequences.
However, radar rainfall estimation requires continuous rain gauge
rainfall data to calibrate and update the Z–R relationship, such data
being usually unavailable in most of the developing world includ-
ing the upper Ping River Basin in northern Thailand, the study area
for this paper. In the absence of such data, the option that is usually
used is to aggregate the radar rainfall to a daily timescale and derive
the needed relationship using daily ground rainfall. This, however,
has been shown to lead to biased rainfall in Mapiam et al. (2009),
which presents a scaling rationale that allowed derivations of the
Z–R relationship at a time scale different to that used in the cali-
bration. The present paper uses this scaling rationale to modify the
Z–R relationship calibrated using daily ground rainfall data to
formulate a hourly rainfall product termed HRRS then verifies
whether HRRS leads to improvements in ensuing hydrological
applications if alternate rainfall inputs are used. Two additional
rainfall products are assessed—the DGR and the HRR evaluated
using the Z–R relationship calibrated from the daily gauge rainfall.

Fig. 5. Comparison of RMSE values of the three rainfall inputs for different simulation cases at the six runoff stations

e rainfall.
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This assessment uses the URBS, a semidistributed rainfall-runoff
model, to assess the relative benefits of using either of these three
rainfall inputs. The accuracy of the overall flow hydrograph esti-
mated using the two products of radar rainfall (HRRS and HRR) as
inputs are explicitly higher than that using DGR. This result is a
likely artifact of the size of the catchment and the relatively sparse
daily rain-gauge network that is available to sample the daily rain-
fall distribution. The insights gained in this study would provide
more evidence alongside many other studies, which suggest that
radar rainfall can be used effectively to represent more accurate
rainfall product compared with rain-gauge rainfall (Johnson et al.
1999; Jayakrishnan et al. 2004; Waleed et al. 2009; Biggs and
Atkinson 2011). In addition, HRRS demonstrates consistently
accurate results in hourly runoff estimation of the overall flow hy-
drographs. Consequently, the scaling transformation used to derive
the HRRS rainfall product appears to have merit in formulating
continuous rainfall. It is expected that this transformation will
be of considerable use in locations where radar rainfall relation-
ships can only be calibrated against ground rainfall data measured
at a daily resolution.
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3.2Model calibration and verification 
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Abstract The large scale reservoir plays an important 

role in modern water resources management by 

regulating the water to address severe flood and drought 

problems. Therefore, the proper planning of water 

resource availability based on uncertainty climate 

change impact is very necessary. The objective of this 

study is to evaluate the changes of water storage and 

outflow based on present and past operation with the 

different future reservoir inflow data by using 

Atmospheric General Circulation model (MRI-

AGCM3.2S) forcing data which is jointly developed by 

Meteorological Research Institute of Japan and Japan 

Meteorological Agency. For each 20-km grid cell, the 

surface runoff generation of MRI-AGCM3.2S was used 

to simulated river discharge at the Sirikit reservoir by a 

distributed flow routing model (1K-FRM) based on the 

kinematic wave theory. In this study, distribution 

mapping methods are applied to raw daily river 

discharge simulated data for remove systematic bias 

between model and observed data. After bias correction 

to daily discharge achievement, the future corrected 

reservoir inflow of different scenarios were given to 

reservoir operation model algorithms and using the 

Artificial Neural network (ANN) for calculation the 

future release flow and reservoir storage based on 

remain the downstream water requirement and amount 

of water losses in this reservoir same as present climate 

condition. The evaluation of future reservoir operation 

based on present rule curve will show the necessary 

decision way to revise or improve current operation to 

adapt to probably water resources availability.                
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Introduction 

 

Water is indispensable for all forms of life and is 

needed, in large quantities, in almost all human 

activities. According to the 2013 Intergovernmental 

Panel on Climate Change (IPCC), the global water cycle 

will change, with increases in disparity between wet and 

dry regions, as well as wet and dry seasons, with some 

regional exceptions. Water resources is an increasingly 

limited and highly essential resource for many countries 

where agriculture is the main income of the economy 

corresponding with ensures the well-being of the people. 

The proper planning of water resource availability based 

on uncertainty climate change impact is very necessary; 

because, the projection of hydrologic inflow data can 

support and help government stakeholder and reservoir 

operator to adapt their decision making to release the 

water subjected to the rule or constraint in advance and 

be consisted of the sustainable development plan in 

future. The large scale reservoir plays an important role 

in modern water resources management by regulating 

the water to address severe flood and drought problems. 

It is the effective tool to store water when severe flood 

occurs for mitigation of the huge loss, damage of lives 

and economics. Not only the excess water resource 

problem, but the inadequate water supply in Thailand 

also experienced the extreme drought. Therefore, to 

investigate the current reservoir operation is an 

important and interested finding to respond to future 

climate change for water management effectively and 

cope with future flood event as well. Therefore, the 

proper planning of water resource availability based on 

uncertainty climate change impact is very necessary. 

The objective of this study is to evaluate the changes of 

water storage and outflow based on present and past 

operation with the different future reservoir inflow data 

by using Atmospheric General Circulation model (MRI-

AGCM3.2S). 

 

Study area 

 

The Sirikit reservoir with coverage catchment area of 

13,130 km
2
 is located of the midstream of Nan River 

basin in Thailand as shown in Fig.1. The upstream of 

the Sirikit reservoir is a mountainousarea which is not 

affected by major flow regulations or any other direct 

human activities impacts.  Y

y
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Fig.1 Map showing the study area, reservoir location 

and spatial 20 km x 20 km square grid of MRI-

AGCM3.2S. 
 

The continuous time series data of observed inflow into 

the reservoir is available for the period of 1974-2013 (40 

years). Its climate is tropical with distinctly clear dry 

and wet seasons. The seasons are defined as follows: the 

dry season starts from November until April and the wet 

season starts from May until October. 

 

Methodology 

 

The overall of this research can be divided into river 

discharge prediction part and reservoir operation 

assessment part for present and future climate scenarios.  

To estimate river flow for water resource assessment, 

the hydrological model is widely represented the 

interaction between hydrologic cycle element such as 

precipitation, soil Moisture, river flow and 

evapotranspiration. Several impacts of climate change 

studies with distributed hydrological model were 

conducted at the Chao Phraya River Basin in Thailand 

(Wichakul et al., 2015; Hunukumbura and Tachikawa, 

2012). In this study, the 1K-FRM distributed flow 

routing model was chosen to handle input spatial data 

such as gridded rainfall; therefore, this model can 

applicable to access reservoir inflow under a changing 

climate as well. 1K-FRM is originated development in 

Hydrology and Water Resources Research Laboratory at 

Department of Civil and Earth Resources Engineering, 

Kyoto University.1K-FRM is a distributed flow routing 

model based on kinematic wave flow approximation. 

The kinematic wave model is conduct to all rectangular 

elements gridded to link the water to downstream 

associate with the derived catchment model. Basically, 

the selecting of Digital Elevation Model (DEM) data 

used in catchment model is HydroSHEDS (Hydrological 

data and maps based on SHuttle Elevation Derivatives at 

multiple Scales) provides hydrographic information in a 

comprehensive and consistent format for both local and 

global-scale applications (Lehner, 2006).1K-FRM used 

30 arc-second resolutions (approximately 1 kilometer at 

near equator area) as a catchment model.  The flow 

direction is defined into 8 directions which assigns flow 

depends on the different elevation with in a direction of 

steepest downward slope as illustrated in Fig. 2.The 

basic kinematic wave equation for each rectangular 

slope elements is  
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where t denotetime; A is the cross -sectional 

area;Q is discharge; and qL (x,t) is the lateral inflow per 

unit length of each slope element. Another equation 

used to solve above equation is the relationship of 

Manning type of the discharge and a rectangular cross -

section area of each cell as follows: 
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where io is slope gradient; n is the Manning’s 

roughness coefficient; and B is the width of the flow. 

There are two main parameters inside 1K-FRM model 

which consist of the Manning’s roughness coefficient 

for the slope unit ns and Manning’s roughness 

coefficient for the river channel unit cell nr. In this 

study, the parameter of ns = 0.03 m
-1/3

s and nr = 0.1 m
-

1/3
s were used for the suitable values. 

General circulation models (GCMs) have been 

commonly used in climate change impact studies. The 

several studies of application to use GCMs in Chao 

Phraya River Basin and surrounding River Basin were 

conducted. For instance, Hunukumbura and Tachikawa 

(2012) utilized the runoff projected by MRIAGCM3.1S, 

which showed the increasing of extreme discharge at the 

upper part of Chao Phraya River Basin and the 

decreasing of monthly discharge in October at the Pasak 

River basin. Kure and Tebakari (2012) showed the 

increased tendency of the mean annual river discharge 

and annual maximum daily flow at the NakhonSawan 

station located at the downstream of the four major 

rivers in the in upper Chao Phraya River Basin using the 

precipitation and temperature projected by MRI-

AGCM3.1S and MRI-AGCM3.2S. Champathong et al. 

(2013) assessed the uncertainty of river flow projections  

using the outputs of MRIAGCM3.1S and MRI-

AGCM3.1H.Kitpaisalsakuiet al. (2016)  also used MRI 

GCM data to assesses the impact of climate change on 

reservoir operation in Central Plain Basin of Thailand. 

The GCM outputs used for this research were 

gridded runoff generation data from MRI-AGCM 3.2S 

(Mizuta et al., 2012), where ‘S’ refers to super-high 

resolution developed by Japan Meteorological Agency 

(JMA) and the Meteorological Research Institute (MRI). 

The AGCMs grids covering the Sirikit reservoir study 

area were total of 88 grids (8 columns and 11 rows) with 

the spatial resolution 0.1875 degree (approximately 20 

km), located between the latitude of 17 degrees 42 

minutes and 19 degrees 35 minutes north and the 

longitude of 100 degrees 7 minutes and 101 degrees 26 

minutes east.To obtain the high resolution of climatic 

forcing data is to used downscaling technic by an 

atmospheric general circulation model (Kitoh et al., 

c

n

,
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2015).The high-resolution that is obtain the observed or 

projected sea surface temperature (SST) as boundary 

condition. This type of mechanism simulations, which 

uses the observed present day inter-annually varying 

SST plus ensemble mean future SST changes obtained 

by CMIP-class models, can minimize the effects of 

climate model bias. Based on the SST data of 28 CMIP5 

model, the different SST spatial patterns are analyzed by 

a cluster analysis of these 28 CMIP5 model. After that, 

the 28 CMIP5 modelclassified into 3 clusters from 8, 14 

and 6 models of cluster 1, cluster 2 and cluster 3, 

respectively.   

That model has a horizontal resolution of 

triangular truncation 959 (TL959) and a vertical 

resolution of 64 levels (top at 0.01 hPa) to transform 

grid uses 1920* 960 grid cells with corresponding to 

approximately a 20 km grid interval. The 20-km mesh 

MRI-AGCM3.2 was employed in each 25-year time-

slice experiment for the present-day climate (1979-

2003) and late 21stcentury climate (2075-2099) 

scenarios with the Representative Concentration 

Pathway (RCP) 8.5 that refers to the final radiative 

forcing achieved by the year 2100 around 8.5 watts per 

square meter (W/m
2
).Moreover, the cluster analysis also 

analyzed the ensemble SST to classify the characteristic 

pattern of SST into three groups as following 1) cluster 

1: Uniform warming in the tropics zone pattern or in the 

both hemispheres, 2) Cluster 2: Larger warming over the 

central equatorial Pacific (so-called EI Nino-like 

pattern) and 3) Cluster 3: Larger warming in the north 

Indian Ocean and north-west Pacific pattern. Therefore, 

the future climate projection was combined of different 

SST (4 future SSTs) to assess the uncertainty of future 

water availability.However, for 20 km grid output data 

provide a new cumulus convection scheme (Yoshimura 

et al, 2015), called the “Yoshimura scheme” only.   For 

each 20-km grid cell, the various hydrological 

components of MRI-AGCM 3.2S such as precipitation, 

evaporation, transpiration and surface runoff generation 

were calculated through the land surface scheme as 

shown in Fig 2.The runoff generation of MRI-

AGCM3.2S was used to simulated river discharge at the 

Sirikit reservoir by a distributed flow routing model 

(1K-FRM) based on the kinematic wave 

theory(Tachikawa and Tanaka, 2013).All period of 

simulation has been performed at a spatial resolution of 

1 km and temporal resolution of one day. For the 

verification data, the observed time series of daily 

inflow was obtained from the Electricity Generating 

Authority of Thailand (EGAT).    

A recent bias correction method based on a 

relationship of cumulative distributions  (CDFs) of the 

GCMs and observation data has been commonly used 

for hydrologic simulations and climate change 

studies.The distribution mapping technique adjusts all 

particles of the cumulative distribution function (CDF) 

of projected data with GCM outputs by using the CDF 

of observation and construct a transfer function to 

convert the projected data using GCMs to corrected 

data. 

 

 
 

Fig.2 The framework diagram river discharge 

simulation. 

a) Land surface generation data of MRI-AGCM3.2S fed 

into river discharge simulation in a grid. b) Schematic 

drawing of a catchment and flow routing model using 

HydroSHEDS DEM. 

 

All bias correction methods of quantile mapping have to 

initiate by 1) sorting long-term observation and 

simulation river discharge data to create CDFs for each 

calendar month (Jan-Dec); 2) correcting bias in the 

frequency and intensity distribution on each different 

method; and 3) rearranging corrected data back to the 

original time series. 

The classical distribution quantile mapping 

(eQM) is expressed by setting the pair with the same 

non-exceedance probability as follow 

))((= ,,
1

,
*

CrawCrawCobsc QFFQ  (3) 

where Q* is the corrected river discharge value, Qraw,C 

is the raw original river discharge value and     stands for 

the inverse function of CDFs of the observed daily 

discharge, and accordingly Fraw,C  as the CDFs of the 

projected river discharge using MRI-

AGCM3.2S.However, for the application of eQM 

method to the future climate condition, if we assume 

that the transfer function is stable and follows the same 

current climate condition. Li et al. (2010) proposed the 

eQM with the difference of CDFs or referred to as 

equidistant CDF matching (EDCDFm) to calculate by 

adding the difference between CDFs of GCM and 

observation river discharge during future climate 

condition as following equation: 
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where, Qraw,Pis the original river discharge value for the 

future projection period. The  
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for the inverse function of CDFs of the observations and 

raw GCMs during present climate period, respectively. 

 Moreover,The gamma distribution with shape 

parameter �  and scale parameter �  is defined as: 
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where  �    is the gamma function. In this study, the 

shape and scale parameter were fitted with observation 

and GCMs projection on each calendar month. The 

gQM method is a parametric correction method which 

can be expressed as: 

),),((= ,,,,,
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CobsCobsCrawCrawCrawγγc βαβαQFFQ (6) 

 

),),((= ,,,,,
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CobsCobsCrawCrawPrawγγp βαβαQFFQ (7) 

 

Maneeet al. (2016) found the equidistant CDF 

matching (EDCDFm) and the empirical with gamma 

distribution quantile mapping (gQM) methods showed 

the good overall performance and applicable to 

potentially changed climate condition in term of less 

bias of water balance and proper for adjusted peak river 

discharge. 

 

For reservoir operation assessment part aims to estimate 

the future water storage and to evaluate the tendency of 

excess water use (flood risk) and insufficient water use 

(drought risk) by given the bias -corrected river 

discharge based on the methodology of previous section. 

The Flowchart of reservoir simulation procedure for 

calculated future reservoir outflow and storage is shown 

as Fig. 3. Kim et.al (2009) investigated the adaptability 

of current dam operation rules under climate change 

condition to a dam in the upper part of Tokyo, Japan 

based on AGCM20 input data. The Artificial Neural 

Network (ANN) is selected to learn the past reservoir 

operation and transferred to the machine learning. The 

relationship of storage and reservoirs inflow is important 

to give through covariates (also known as input 

variables) and response variables (also known as output 

variables) is represented as release flow of reservoir.The

ANN consists of the neurons are organized in layers, 

which are usually fully connected by synapses. A 

synapse can only connect to subsequent layers.The input 

layer consists of all covariates in separate neurons and 

the output layer consists of the response variables. 

 

Fig.3 Flowchart of reservoir simulation for future 

reservoir outflow and storage. 

 

The layers in between input and output layers are 

referred to as hidden layers, as they are not directly 

observable. Input layer and hidden layers include a 

constant neuron relating to intercept synapses. The 

number of hidden layers and numbers of nodes in each 

hidden layer are usually determined by a trial-and-error 

procedure (Govindaraju, R. S., 2000); therefore, the 

output of a node in a layer is only a dependent on the 

inputs it receives from previous layers and the 

corresponding weight.

This neural network models the relationship between the 

two covariates (inflow and water storage) and the 

response variable outflow.There are twelve neural 

networks which are constructed by separating reservoir 

operation data (reservoir inflow, outflow and water 

storage) into on different each calendar month. For the 

future outflow estimation, the analysis was calculated by 

bias-corrected inflow as an input to reservoir and setting 

the daily loess in the reservoir based on 40 years 

historical reservoir operation. Lastly, the general water 

balance equation was used to calculate the future 

reservoir storage as 

ttttt LossOISS --+=1+
  (8) 

where t stands for the month, 
1+tS stands for next day 

reservoir storage, 
tS is current reservoir storage, 

tI is 

daily inflow to reservoir, 
tO  is the daily outflow that is 

acquired from different model structure of ANN and

tLoss  is total daily losses from reservoir. In this study, 

the losses from reservoir were calculated by the 

different water storage from general water balance 

equation and the observed water storage. According to 

the various the future river discharge projection was 

conducted before given to reservoir operation model, the 

initial reservoir storage setting is also important to 

control reservoir storage at the initial condition, So the 

initial reservoir storage condition is defined into three 

different level as follow, normal condition (at 8,250 

MCM), upper rule curve condition on January, 1st (at 

9,494 MCM) and lower rule curve condition on January, 

1st (at 6,405 MCM).

Results and discussion 

The results of average daily reservoir inflow of bias-

corrected river discharge at Sirikit dam during present 

climate (1979-2003) were summarizes in the flow 

duration curve plot for comparison the characteristic of 

high and low flow between reservoir inflow observation 

and both bias-correctedriver discharge as shown inFig4. 

Table 1 Summary of ensemble simulation name for 

future experiment. 
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For the changes in river discharge through Sirikit 

reservoir under a changing climate. The majority cases 

of the future annual reservoir inflow are higher than 

present observed Sirikit reservoir except the c1_gQM 

and c2_gQM. The amount of water resources 

availability in the future climate experiment showed that 

the reservoir inflow with SST of c3 pattern reproduce a 

highest value. However, after applying bias -corrected 

reservoir inflow data can cause the contrast of low flow 

occur in the case of reservoir inflow with SST of c2 

pattern as shown in Fig.5 and Fig.6. 

Comparison release flow simulation and observation 

during 1974-2013 

The output of reservoir operation based on the Artificial 

Neural Network (ANN) have been evaluate by 

compared with the observed outflow from 1974-2013. 

 

Fig.4 The total-flow duration curve between 

observation, raw simulation and bias -corrected river 

discharge at Sirikit dam during present climate (1979-

2003). 

 

Fig.5 The total-flow duration curve between 

observation, raw simulation and bias-corrected river 

discharge (gQM method) at Sirikit dam during future 

climate (2075-2099). 

 

Fig.6 The total-flow duration curve between 

observation, raw simulation and bias -corrected river 

discharge (EDCDFm method) at Sirikit dam during 

future climate (2075-2099). 

The best simulated results of average monthly outflow 

and water storage showed a good performance and 

reasonable to utilized for the future release flow 

assessment under the impacts of climate change. Fig.7 

showed that the average outflow simulation performed 

well with the small difference between average outflow 

and water storage. However, the amount of outflow in 

particular month found some error for monthly outflow 

analysis as shown in Fig.8. 

Lastly, the future reservoir storage and outflow 

simulation under different scenarios showed that in 

percentage of changes in Table 2 for water storage and 

Table 3 for water release of different reservoir inflow 

projection data. The limitation of this projection is to 

assume the same rate of downstream water requirement 

and reservoir loss during present climate condition.  

According to the Table 2, the tendency of future storage 

might be decreasing of all scenarios with bias -corrected 

gQM cases of reservoir inflow projection data. 

 

 

Fig.7 The average monthly observed and simulated 

outflow during 1974-2013. 

Bias Correction Method

Future SST setting

Ensemble Mean SST Mean_EDCDF Mean_gQM

Cluster1 SST C1_ EDCDF C1_gQM

Cluster2 SST C2_ EDCDF C2_gQM

Cluster3 SST C3_ EDCDF C3_gQM

Empirical distribution 

quantile mapping

Gamma distribution 

quantile mapping
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Fig.8 Comparison of monthly outflow observation and 

simulation by ANN 

Furthermore, the future storage water storage of bias -

corrected Mean_EQCDFm and c1_ EQCDFm showed 

the decreasing water storage from January until July and 

increasing water storage from August until December. 

For c2_ EQCDFm and c3_ EQCDFm cases showed the 

increasing water storage trend throughout the year. The 

overall water release flow results showed the reasonable 

and matching with the relationship of water storage. For 

instance, the tendency of future water release might be 

decreasing of all scenarios with bias -corrected gQM 

cases. 

Table 2 The percentage of water storage changes on 

each different reservoir inflow projection data. 

 

Table 3 The percentage of water release changes on 

each reservoir inflow projection data. 

 

Conclusions 

The tendency of future reservoir inflow after applying 

both the empirical distribution quantile mapping with 

difference between cumulative distribution functions 

(CDFs) of GCM and observation river discharge (eQM) 

and the empirical with gamma distribution quantile 

mapping (gQM) provides higher than present climate 

condition at Sirikit Reservoir. 

Finally, the future reservoir storage and outflow 

simulation under different scenarios showed the 

tendency of future storage might be decreasing of all 

scenarios with bias-corrected gQM cases of reservoir 

inflow projection data. On the other hand, the scenarios 

with bias-corrected eQM cases of reservoir inflow 

projection data presented the increase storage due to 

high reservoir inflow on wet season as similarly with the 

water storage trend analysis.(Maneeet.al, 2015). The 

results indicated that, The SK dam seems to reduce the 

release flow due to decreasing bias-corrected gQM 

reservoir inflow. The overall water inflow and storage 

results showed the reasonable and matching with 

previous studies (Kitpaisalsakuiet.al, 2016). 
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Abstract A dynamic equilibrium bay (DEB) is an embay-
ment with continuous sediment supply and its shoreline plan-
form can remain stable over a long period of time without
erosion or accretion. For coastal conservation of sandy
headland-bay beaches (HBB), the concept of using a static
equilibrium bay (SEB) is well known, but that for DEB has
received little attention. Moreover, an empirical equation for
the stability of a DEB is not yet available. Experiments on
DEB shape that aim to derive new coefficients in the parabolic
bay shape equation (PBSE) for DEB are now being conducted
in the laboratory. The work commences from an initial artifi-
cial HBB in static equilibrium with sediment supply source
from the lee of an upcoast headland. A final equilibrium plan-
form is obtained for the condition with a specific wave obliq-
uity and sediment supply rate until no further shoreline change
is found. In order to fit the PBSE for a DEB, a new parameter
called SSR (sediment supply ratio) that represents the ratio of
sediment supply rate from the source and the potential
longshore sediment transport rate is introduced to quantify
the balance of sediment to the bay. Alternative C coefficients
in the PBSE for DEB, which include wave obliquity and the
SSR, are then calculated. These new coefficients for DEB can

now be used to evaluate the influence of sediment supply from
a riverine source on a DEB and to classify its equilibrium
status for planning sediment management strategies in coastal
conservation.

Keywords Dynamic equilibrium bay (DEB) . Parabolic bay
shape equation (PBSE) . Headland-bay beaches (HBB) .

Sediment supply ratio (SSR)

Introduction

An equilibrium bay is an embayment whose shoreline plan-
form remains unchanged over time. Conventionally, the sta-
bility of a bay can be classified as in static equilibrium, dy-
namic equilibrium, or unstable (Silvester and Hsu 1997).
Among these, a static equilibrium bay (SEB) exists when the
predominant waves arrive normal to its entire periphery from
a specific angle nearshore, resulting in no littoral drift within
the bay. On the other hand, a dynamic equilibrium bay (DEB)
occurs under a specific sediment supply and wave climate,
when sediment transport into the bay is equal to that
transported out (Somruthai et al. 2014). A DEB shoreline is
usually seaward of a SEB periphery, due to complex coastal
processes in bay formation than its SEB counterparts. If con-
tinuous sediment drains into a bay from a river, then littoral
drift occurs along the bay because of wave action and finally
the sediment transport gradient may equal to zero. When the
sediment supply of a bay in DEB is reduced or ceased, erosion
will attempt to reshape the shoreline into a SEB. Such a con-
dition may be referred to as disequilibrium, because the em-
bayment is trying to adjust to changing conditions.
The overall objective of coastal conservation and manage-

ment is to provide the best long-term and sustainable use of
coastal natural resources. In order to achieve this objective for
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an embayment, the present status of shoreline equilibrium
needs to be evaluated, and the PBSE (Hsu and Evans 1989)
can be applied to determine a bay’s equilibrium status. Once
the C coefficients in PBSE for SEB are determined (Hsu and
Evans 1989), its equilibrium status can be checked; then the
headland control method can be applied to stabilize an eroding
embayment that has no sediment supply sources within the
bay. However, a bay having the sediment supply sources can-
not be checked directly for its equilibrium status, despite its
coefficients for DEB have been derived with wave obliquity
(Tan and Chiew 1993). Consequently, the sediment manage-
ment cannot be proposed because the relationship between the
equilibrium bay shape and sediment supply is unknown.
Therefore, further study is needed to fill this gap. If the equi-
librium bay status is known and its relationship with the sed-
iment supply rate, a sediment management to stabilize a sec-
tion of shoreline can be proposed in order to conserve the
coastal system involving embayment and also to predict the
ultimate shape of the DEB.
Several previous studies have reported laboratory experi-

ments to quantify equilibrium shape for the DEB (e.g.,Tan and
Chiew 1993; Xiam 2004; Chatchai 2005). Their experimental
data are used to determine a particular equation for DEB but
not a generalized function due to limited number of data avail-
able. In this study, the laboratory experiments are conducted to
investigate the variation of DEB shape with different sediment
supply rates from the lee of an upcoast headland. The final
equilibrium planform for these DEBs are then analyzed. A set
of generalized new equations for the C coefficients in PBSE
for DEB is proposed in terms of two main parameters, wave
obliquity and the sediment supply rate.

Concepts of equilibrium bay shape

The concept of a continuity equation for DEB has been pro-
posed by Somruthai et al. (2014). This concept explains the

components of sediment budget in a bay (Fig. 1) and the
continuity equation for shoreline change given by Eq. (1),

∂y
∂t

þ 1

D

∂Qbay

∂x
¼ 0 ð1Þ

where y is shoreline position,Qbay is sediment transport rate in
a bay and D is closure depth. When a bay is in equilibrium

state, its shoreline has not changed over time; therefore ∂y
∂t ¼ 0

and Eq. (1) can be rewritten as,

1

D

∂Qbay

∂x
¼ 0 ð2Þ

Sediment transport rate in a bay, Qbay, can be expressed as
Eq.(3).

Qbay ¼ Q
0
u2 þ Q

0
R−Q

0
lt ð3Þ

In Eq. (3), there are two sources of sediment supply within
the bay, namely Qu2

′ and QR
′ . First, Qu2

′ is the effective supply
associated with the Qu2 which is a component of the sediment
into the bay from upcoast represented by Qu, while its other
component (Qu1) is transported outside the bay. Second, QR

′ is
the distribution of the sediment supply from river or inland
into a bay which is represented byQR. The distribution ofQu2

and QR in a bay are needed for further examinations. For
example, calculation of the distribution of QR can be found
in Kraus and Harikai (1983). In this study, the Qu2 is assumed
to be negligible (it represents an embayment in which the
upcoast headland is long and the effect of Qu2 is trivial).
Therefore, only QR is used to represent the sediment supply
sources for the SEB considered in this study. Finally, Qlt

′ , on
the right-hand-side of Eq.(3), is the sediment transport rate
which occurred due to wave and current action on the consid-
ered shoreline sections and applied to represent the distribu-
tion ofQltwithin the bay. The quantity ofQlt can be computed
using the wave conditions around the bay periphery of R0. For
a SEB, QR is equal to zero, and its shoreline is gradually

Fig. 1 Sediment budget in a bay
(Somruthai et al. 2014)
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reshaped until Qlt
′ is equal to zero. Therefore, Eq. (2) can be

rewritten as Eq. (4).

∂Qbay

∂x
¼ ∂

∂x
Q

0
R þ Q

0
lt


 �
¼ 0 ð4Þ

Equation (4) states that the rate at which sediment comes
into a bay is equal to sediment transported out from it, as
depicted in Fig. 2. Based on this concept, a non-dimensional
sediment supply ratio called SSR(=QR/Qlt) is introduced
(Somruthai et al. 2014) as a new variable in the present
analysis.

Parabolic bay shape equation (PBSE)

Various researches have proposed different equations to fit the
periphery of an embayment. They are the logarithmic spiral
(Krumbein 1944; Yasso 1965), the hyperbolic-tangent
(Moreno and Kraus 1999), and the PBSE (Hsu and Evans
1989; Silvester and Hsu 1993, 1997). The bay shape equations
developed by Yasso (1965), Vichetpan (1969) and Ho (1971)
were in terms of a log-spiral function. The limitation of this
function is that it is difficult to define the center of a logarithmic
spiral and the equation fits well only with the curve in the lee of
the upcoast headland, but cannot be applied for the downcoast
periphery of the bay. The equation given byMoreno and Kraus
(1999) had parameters that did not relate to wave obliquity and
bay physical conditions, and it lacked the physical justification
to explain the equilibrium state of the bay.
The PBSE was developed to overcome the limitation of

lacking physical justification. It was successfully derived by
Hsu and Evans (1989) for a SEB in the form of a second-order
polynomial based on two basic parameters: wave obliquity (β)
and control line length (R0) as expressed in Eq. (5). The orig-
inal three C coefficients for the PBSE were derived using 14
prototype bays in Australia and 13 laboratory tests (Hsu and
Evans 1989). They showed that all C coefficients are a func-
tion of only one parameter, β. Subsequently, Tan and Chiew
(1994) modified the PBSE by reducing theC coefficients from
three coefficients to one coefficient α, which makes the equa-
tion easy to use. However, the original PBSE is more sensitive
to variations in the downdrift control point and causes minor
disagreement in the resulting bay periphery at the long section

away from the upcoast control point. The equation was further
improved by including 38 bays in Brazil and simplifying the
three C coefficients into one variable explicitly using regres-
sion analysis (Yu and Hsu 2006).

R

R0
¼ C0 þ C1

β
θ

� 
þ C2

β
θ

� 2
ð5Þ

Where, R is the radii drawn from the point of diffraction to
the beach at angle θ to the wave-crest line, R0 is the control line
at angle β which is the distance between the upcoast headland
and downcoast control point, β is the wave obliquity angle
between R0 and the tangent to the downcoast beach line. C0,
C1, and C2 are coefficients dependent on the wave obliquity
angle. Relevant variables in Eq. (5) are explained in Fig. 3.
Nowadays, the PBSE has been widely used for the appli-

cations of SEB, especially with the development of education-
al software, MEPBAY (Klein et al. 2003). Hsu et al. (2010)
reviewed the research related to HBB and the PBSE for sev-
eral practical examples, in which the PBSE is verified for both
natural and man-made bay beaches and applied for shoreline
protection, reduction of erosion downcoast of harbors or large
coastal structures, design of recreational HBB, and for
environmental impact assessment. These examples indicate
that the PBSE of Hsu and Evans (1989) is popular and
useful in various engineering applications.
More recently, the PBSE for a DEB and its coefficients

were proposed by Tan and Chiew (1993) solely through lab-
oratory tests with over sediment supply. Therefore, the appli-
cation of this equation to practical problems is confined to
limited field conditions. Tan and Chiew (1993)’s equation
and its coefficient α, for DEB and also SEB (Tan and Chiew
1994) are expressed in Eq. (6),

R

R0
¼ 1þ α−βcotβf g þ βcotβ−2αf g β

θ

� 
þ α

β
θ

� 2
ð6Þ

where:

α ¼ 0:277−0:0785� 10
βπ
180½ � (For static equilibrium)

α ¼ −0:004−0:113� 10
βπ
180½ � (For dynamic

equilibrium)

The equations for DEB developed by Tan and Chiew
(1993) were based on the over sediment supply; therefore,

Fig. 2 The sediment balance
concept in DEB. (Somruthai et al.
2014)
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they have not been derived for the effects of sediment supply
rate to the equilibrium bay shape. This gap was filled by
Chatchai (2005), who analyzed the α coefficients in Tan and
Chiew (1993)’s PBSE for DEB using his own laboratory data
that had a given rate of sediment supply. However, the result is
limited use due to inadequate number of experiments with
small wave angles.

Laboratory experiments

A series of DEB experiments were conducted in a wave basin
at the Asian Institute of Technology in Bangkok, Thailand.
The basin was 14 m long, 5 m wide and equipped with a

regular wave generator (Fig. 4). An initial shoreline was set
up between two headlands spaced at 2 m apart. The tip of the
wave guide served as the inner tip of the upcoast headland.
The sediment supply apparatus was designed to supply the
sand at the hook zone near the upcoast tip, similar to the
sediment supply from a river. Water depth in the wave basin
was constant at 0.20 m. The wave height was 0.043 m and
wave period was 2 s. These conditions were the same as in the
experiment conducted by Xiam (2004) and Chatchai (2005)
and the results confirmed the previous outcomes on two key
issues. First, the wave height and wave period did not affect
the equilibrium bay shape but influenced only the time it took
to reach the equilibrium state according to Vichetpan (1969)
and Ho (1971). Second, the physical model experiments had

Fig. 3 Definition sketch of a
parabolic approach to bay shape
(Hsu and Evans 1989)

Fig. 4 Experimental set up in a wave basin
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been conducted for the equilibrium bay shape by setting in the
condition that the scaling factors did not affect the results. The
wave condition used in the models had sufficient height and
length to move the sediment supply and also agreed with
previous results as shown in Table 1. Therefore, there was
confidence that the equilibrium bay shape would occur and
can represent the field conditions except the time to equilibri-
um. The wave obliquity varied from 25, 45 to 60°. The aver-
age sand grain with d50=0.3 mm was used as the beach ma-
terial. The angle of repose of the sand was 15–35°; therefore,
the initial slope at the seaward side of the beach set at 1:4 was
stable because the slope angle was flatter than the available
angle of repose. The sediment supply rate varied between 70
and 475 g/min; therefore, the ratios of sediment supply rate to
longshore sediment transport rate (SSR) were varied from
0.055 to 0.268. The shapes of bays were recorded regularly,
and it took at least 45 h before a bay approached the equilib-
rium state while the sediment supply was continuously sup-
plied at a constant rate. A frame stand 5.50 m high was used to
take photographs of the shapes of the bays. Figure 5 shows an
example of shoreline coordinate systems that were used to
investigate the change in bay shape.
In this study, the experiment for potential longshore sedi-

ment transport rate (LST) measurement and the experiment
for equilibrium bay shape observation were separated. In the
work of Xiam (2004) and Chatchai (2005), a series of the
experiments for a DEB was conducted with various sediment
supply rates. Both studies computed the amount of longshore
sediment transport rate using the CERC formula which was
applicable to the field scale, without any laboratory measure-
ment. Since the laboratory scale was much smaller than the
field condition, it was inappropriate to directly apply the
CERC formula with the laboratory data. Therefore, the
longshore sediment transport rate was measured directly in
the laboratory with the same condition of DEB experiments.
The measured longshore sediment transport rate was used to
rearrange the SSR value from those two experiments and
transformed their results in the analysis of this study. The
measurement of long shore sediment transport rate was taken
in the wave basin by the straight shoreline, without the head-
lands, for various wave obliquities. The sediment was sup-
plied from the upcoast area in order to balance the sediment
that was transported out of the bay, and the method used in this
study was the same as proposed by Kamphuis (1991). The
hypothesis was that the shoreline would remain unchanged
if sediment supply at the upcoast area was enough to balance
the amount of LST toward downcoast. It means that the shore-
line would reach an equilibrium condition with a specific
wave obliquity and a sediment supply rate. Then, the LST
could be trapped andmeasured at a downcoast point. The rates
of sediment feeding by the sediment supply apparatus at the
upcoast area were gradually increased for every wave obliq-
uity. The experiment of LST measurement were carried out T
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with a wide range of wave obliquities: 25, 30, 45 and 60°.
Wave height and wave period were fixed with the same con-
dition of the DEB experiments.
In the experiment of LSTmeasurement, a straight shoreline

was eroded initially from the upcoast of the shoreline until a
equilibrium shoreline was produced. Sediment was then sup-
plied to balance the sediment loss from the shoreline and a
new shoreline became stable with this specific rate of sedi-
ment supply. Sediment feeding rate was then gradually in-
creased to produce another equilibrium condition. Each shore-
line planform was stable for a specific sediment supply rate.
That is, it did not change its shape with time; while the sedi-
ment trap made up from the non-woven textile was used to
measure the trapped sediment at a downcoast of the shoreline.
It took approximately another 3–4 h to render a stable shore-
line for each case. The experiments were repeated 6 times for
6 sediment supply rates. Since the obliquity of the final equi-
librium shorelines changed slightly from that of the initial
shoreline; therefore, the actual angle was measured and
afterthat it reached to equilibrium. Figure 6 shows the results

of LST and the measured wave obliquity for the final equilib-
rium shoreline.
Experimental procedures proposed for DEB experiments

are outlined in Fig. 7. The initial shoreline was straight and
subjected to the action by the waves generated with constant
direction until it reached equilibrium with no sand supply. The
equilibrium bay shape was almost constant or changes were
insignificant over time. This state was called a SEB. After that,
a specific sediment supply rate was introduced until the beach
reached the equilibrium state again. The new equilibrium that
occurred during the supply of sediment was defined as the
dynamic equilibrium condition. Various rates of sediment
were supplied for a range of wave obliquities. When each
sediment rate caused the bay to reach a new equilibrium, the
higher sediment supply rate was applied for producing the
next equilibrium state at that higher sediment supply rate.
To expand the total number of experimental data, new

study cases were designed to complement the previous studies
with additional experiments using 25, 45, and 60° wave obliq-
uity. In total, there were 18 data sets for deriving the function

Fig. 6 Relationship between
LST and β in experiments

Fig. 5 Grid co-ordinate systems with the position of photo shooting point
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of DEB as shown in Table 2, in which 8 experiments were
from the present study and 10 others for the small wave
obliquity taken from Xiam (2004) and Chatchai (2005).
The previous experiments with β equals 20, 30, and 40°

took around 80 h to reach an equilibrium state. However, the
present study took around 40 h. The previous studies by Xiam
(2004) and Chatchai (2005) stated that a bay could reach the
equilibrium status after around 20–30 h; therefore, 40 h was
sufficient to reach the equilibrium shape in most cases.

Experimental results

The equilibrium of a DEB can be determined in the following
ways: (1) The wave is observed for simultaneous breaking
around the shoreline periphery, (2) The volume of sediment
deposit near the downcoast area is very small, and (3) The
boundary of dry sand and wet sand is not changed or the
recession of the shoreline is negligible.
From the results of equilibrium bay shape for 18DEB cases

obtained, their equilibrium bay peripheries are normalized
using R0. It is clearly shown that the non-dimensional bay
shapes for DEB differ with different sediment supply rates
(SSR). When SSR increases, the bay shape adjusts by itself
and becomes seaward until it finally approaches a state of
new equilibrium. The non-dimensional bay shape of DEB
varies systematically from static to dynamic condition, in that
the shoreline of a DEB is more seaward than the SEB. The
shoreline of a DEB with large SSR is more seaward than that
with a small SSR.

Non-dimensional equilibrium bay shapes are then collec-
tively analyzed for β = 20, 25, 30, 40, 45, and 60°, respective-
ly. An example of the non-dimensional equilibrium bay
shapes with 20-degree wave obliquity and four SSR rates of
0.067, 0.134, 0.201, and 0.268 are depicted in Fig. 8a and b.
The new C coefficients are determined from these non-
dimensional equilibrium bay shapes, such as in Fig. 8b for
20° wave obliquity.
The PBSE can now be used to fit the DEB. A set of new C

coefficients are derived as a function of SSR and wave obliq-
uity, β, as expressed in Eqs. (7a), (7b) and (7c) respectively.
The exponential and second-order polynomial form in that
equation is a good and reasonable function because it can
explain asymptotic values for both SEB and DEB with over
sediment supply. All C coefficients will approach that for an
SEB when SSR is equal to zero and vice- versa for the DEB.
They are plotted as shown in Figs. 9a, b and c for C0, C1 and
C2, respectively, with SSR=0.05, 0.10, 0.15 and 0.20.

C0 ¼ −0:00062þ 0:00041e−4SSR
� �

β2 þ 0:0338−0:024e−3:6SSR
� �

β
−0:7154þ 0:6572e−4:4SSR

ð7aÞ

C1 ¼ 0:0014−0:0012e−7:5SSR
� �

β2 þ −0:0703þ 0:0759e−8SSR
� �

β
þ2:4895−1:7015e−7:5SSR ð7bÞ

C2 ¼ −0:00072þ 0:000704e−12SSR
� �

β2 þ 0:032−0:048e−15SSR
� �

β
−0:6227þ 0:904e−15SSR

ð7cÞ

The SSR values in Eqs. (7a), (7b) and (7c) vary from zero to
more than 1. If SSR is more than 1, it means that QR is much

Table 2 Summary of present and previous experimental data used for
the analysis

Wave
Obliquity (β)

Sediment Supply
Ratio (SSR), QR/Qιt

Total
duration (hr.)

Remark

20 0.067 72 Chatchai (2005)
0.134 72

0.201 72

0.268 68

25 0.044 44 Present study
0.066 40

0.088 40

0.166 40

30 0.031 76 Xiam (2004)
0.067 72

40 0.069 80 Chatchai (2005)
0.113 80

0.169 80

0.206 80

45 0.074 40 Present study
0.084 51

0.147 52

60 0.055 41 Present study

Remark: SSR = QR/Qlt, where QR = Sediment supply rate, Qlt =
Longshore sediment transport rate

Fig. 7 Flow chart of experiments operation and analysis
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larger thanQlt, and the value of coefficients is approaching the
one proposed by Tan and Chiew (1993). In the case of an SSR
greater than 1, the DEB shape is stable, because the sediment
supply rate exceeds the potential of waves to transport the
sediment. This exceeded sediment supply rate will deposit
near to the sediment supply source and form sand spit as
reported by Vithana et al. (2000). This also agrees with the
results of Tan and Chiew (1993) for the experiments with over
sediment supply. When SSR equals zero for a specific β and
each C coefficient approaches that for the SEB condition. On
the other hand, as SSR increases, the relationship between β
and each C coefficient reaches a constant for a specific sedi-
ment supply rate.
Figures 9a, b and c depict the C coefficients for DEB

with SSR= 0.05, 0.10, 0.15 and 0.20. These coefficients
change smoothly and systematically with β. They are lo-
cated between two extreme conditions of no sediment
supply (SEB) and over sediment supply (DEB).
Figure 9a shows C0 for DEB is lower than that for SEB;
and a higher value of SSR provides a lower C0, while
higher wave obliquity β also gives a lower C0. The C1
coefficient for DEB in Fig. 9b is consistently higher than

that for SEB, and higher SSR gives higher C1. Also, the
Fig. 9c indicates that the C2 value for DEB is lower than
the original C2.

Conclusions

The experiments on DEB with variations of sediment supply
rate fed within the lee of an upcoast headland were success-
fully conducted in the laboratory. The experiments were set
for 25, 45, and 60° wave obliquity. The present experimental
results together with the data from previous studies with 20,
30, and 40° wave obliquity are used to derive the new gener-
alized C coefficients in PBSE for DEB. The newly derived
coefficients vary uniformly and systematically when sediment
supply changes. The new coefficients are proposed as a func-
tion with two key parameters, being wave obliquity (β) and
sediment supply ratio (SSR), which can be applied for both
SEB and DEB cases. For SEB, the SSR is equal to zero, and
the C coefficients are identical to that given by Hsu and Evans
(1989). For DEB, the SSR value is greater than zero and can be
increased until they are equal to that proposed by Tan and

a) Experimental data – 20 degrees

b) Computed DEB– 20 degrees

Fig. 8 Example of non-
dimensional DEB of 20-degree
wave obliquity for various SSR. a.
Experimental data – 20°. b.
Computed DEB– 20°
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a)
0C

b)
1C

c)
2C

Fig. 9 C coefficients proposed
for DEB as derived from
experimental results. a. C0. b. C1.
c. C2
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Chiew (1993). Thus, an appropriate set of C coefficients can be
substituted into the PBSE for checking, designing, and planning
for an embayment in static equilibrium or in dynamic equilib-
rium that has riverine sediment from the lee of its upcoast head-
land as the only supply for the embayment. This approach is
recommended for sediment management in coastal zone with a
river basin, as well as for the conservation of a DEB.
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